内容摘要:本文介绍了数据挖掘技术在图书馆中的应用,并运用改进的Apriori关联挖掘算法对安徽省图书馆自动化系统中读者流通库进行挖掘,并对挖掘出的结果及其意义进行评价,从而为图书馆读者管理、图书资源的采购提供决策支持。
关键词:数据挖掘 Apriori算法 图书馆管理 读者管理
数据挖掘技术在商业领域内的应用给图书馆带来了很大的启发。图书馆的数据库可以运用数据挖掘技术中的关联规则分析、聚类分析、决策树、时间序列分析等数据挖掘方法,以找出数据库中蕴藏的对于图书馆管理有用的潜在规则,并且通过描述和预测,为图书馆的图书采购、读者服务、馆藏目录设置等管理工作提供决策支持。
关联规则是与多数人想象的挖掘过程中最相近的一种数据挖掘形式,即寻找在同一事件中出现的不同项的相关性。关联规则的研究有助于发现数据库中不同商品间的联系,找出顾客购买行为模式。在图书馆运用关联规则分析可以细分出读者群,根据其借阅情况提供不同的服务,为图书馆的管理决策提供参考。关联规则的核心算法是Apriori算法。
关联规则的基本概念及算法
挖掘流通借阅事务数据库中所有的关联规则的问题可以被划分成如下两个子问题:
找出所有具有最小支持度的项集(即频繁项集),可用Apriori算法来找出频繁项集。由频繁项集产生强关联规则,对于每一个频繁项集I,找出其中所有的非空子集,然后,对于每一个这样的子集a,如果support(I)与support(a)的比值大于最小置信度,则存在规则a=>(I-a)。
(一)关联规则算法
关联规则的挖掘主要是在数据库中找出支持用户指定的最小支持度S和最小置信度C的关联规则,从而指导人们的一些管理决策。目前,关联规则的挖掘方法主要是找出数据库中的频繁项集,然后由频繁项集产生关联规则。
(二)Aprior算法
Apriori算法是一种挖掘布尔关联规则的频繁项集的算法,它主要是利用逐层搜索的迭代方法来寻找数据库中频繁出现的项集。主要步骤是:第一步,产生频繁1-项集L
1,扫描数据库D,出现在D中各个数据项的集合就是频繁1-项候选项集C1,并统计出每个数据项出现的次数,次数大于最小支持计数(预先)定义的项的集合就是频繁1-项集L
1;第K步,产生频繁K-项集L
k,利用上一步产生的频繁(K-1)-项集L
k-1,与自己连接产生K-项集候选集C
k,扫描数据库事务库,计算C
k中每个成员出现的次数,将小于最小支持度的候选项删除,最后产生频繁K-项集。
算法:Apriori使用根据候选生成的逐层迭代找出频繁项集
输入:流通借阅数据库D;最要支持度阈值minsup
输出:D中的频繁项集L
算法代码:
1)L
1一所有频繁项集1-项目集;
2)for(k=2;L
k≠φ,k++){
3)C
k=apriori_gen(L
k-1,minsupport)
4)for all C∈C
t do{
5)C
t=Subset(C
k,T)
6)For all c∈C
t do
7)c.count++;
8)}
9)L
k={c∈C
k|support(c)>=minsup}
10)}
11)return L={所有的L
k}
Apriori算法的第1步找出频繁1-项集的集合L
1。在第2~10步中,L
k-1用于产生候选C
k,以找出L
k。Apriori过程产生候选,第3步使用Apriori性质删除那些具有非频繁子集的候选,第4步扫描数据库,第5步使用subset函数找出事务中的候选的所有子集,第6步和第7步对每个这样的候选累加计数。最后,所有满足最小支持度的候选会形成频繁项集L。
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典计算机谈改进的Apriori关联挖掘算法的实践应用在线全文阅读。