3.2 计算单元和计算参数的选取 根据隧道结构的不同部分的特点选用合适的单元可以使模型更加接近工程实际,提高计算精度,减小解题规模。本次模拟采用ANSYS软件对隧道开挖采用二维方式模拟,计算采用了三种单元,用实体单元PLANE42模拟围岩和挖去的土体单元,用杆单元LINE1模拟隧道锚杆,用梁单元BEAM3模拟喷射混凝土和钢拱架。主要模拟计算参数喷射混凝土:厚度0.3m,弹性模量30e9Pa,泊松比0.2,密度2551kg/m3;围岩:弹性模量1.3e9Pa,泊松比0.38,凝聚力0.2e6Pa,内摩擦角21;锚杆:弹性模量200ePa,泊松比0.3,密度7840kg/m3 。
3.3 数值模拟分析 采用ANSYS软件对长锚杆支护软弱围岩隧道方案进行模拟,取经过隧道纵轴线的围岩立面为研究对象,分别得到27根4米锚杆、26根6米锚杆、12根8米锚杆作用下的围岩竖向位移分布云图。
3.3.1 以ANSYS模拟开挖和支护效果,选取合理的模拟计算参数十分重要,经多次反复调试及验证才能获得有效的接近工程实际的模拟云图。
3.3.2 位移控制效果分析。如图2,27根3m锚杆控制最大变形量为18.947cm,26根6m锚杆控制最大变形量为14.009cm,12根8m锚杆控制最大变形量为14.7cm,且都发生在仰拱处,可见,优化的锚杆设置控制变形最为有效。由锚杆轴力图知,锚杆近端轴力大,远端轴力小,而且拱顶轴力比两侧的大,且锚杆的轴力相对于隧道结构来说是对称的。
3.3.3 围岩稳定性分析。在长锚杆的作用下,由于长锚杆较强的锚固力作用,改善了围岩的应力状态,临空面附近稳定性较弱的岩体与深部稳定性较好的岩体通过长锚杆连接在一起,增强了岩体结构的整体作用,使得围岩的整体性和承载能力得到了提高,围岩的稳定性亦显着提高。
4 结论
4.1 对现场试验进行数值模拟计算,为软岩大变形控制方法的研究提供了一定的依据。
4.2 大变形隧道锚杆与围岩相互作用虽取决于围岩的力学特性以及隧道所处地形情况,但长锚杆对软弱围岩隧道的变形也具有一定的控制作用,长锚杆能够改变围岩的力学特性,提高围岩的自承能力,减少围岩变形,保持隧道围岩的稳定性。
4.3 针对具体地形以及隧道围岩的力学性质等因素优化锚杆设置,对于软弱围岩隧道,长锚杆的设置对围岩的加固效果优于普通锚杆设置。
参考文献:
[1]孙钧.岩土力学与地下工程结构分析的若干进展[J].力学季刊,2005,26(3):329-338.
孙钧.地下结构有限元法解析[M].上海:同济大学出版社,1988.
郑颖人,赵尚毅,邓楚键等.有限元极限分析法发展及其在岩土工程中的应用[J].中国工程科学,2006,8(12):39-61.
赵玲,李晓红,顾义磊等.高应力区隧道围岩变形破坏的数值模拟及物理模拟研究[J].岩土力学,2007,28(增):393-397.
谷栓成,姚国圣,刘娟等.锚杆在软岩中作用机制的研究[J].山东科技大学学报(自然科学版),2005,24(4):74-76.
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典工学类浅论软弱围岩隧道长锚杆支护作用模拟分析(2)在线全文阅读。
相关推荐: