EF 海(X)=( X/Na) 气/( X/Na) 海(1)
EF 壳(X)=( X/Na) 气/( X/Na) 壳(2)
其中, 公式(1)为判断海洋源的计算公式, 以Na为参考元素; 公式(2)为陆地源的计算公式, 以Al 为参考元素。(X/Na)气、(X/Na)海、(X/Na)壳分别代表元素X在大气颗粒物、海水及地壳中的含量。
通常将EF>10 作为大气颗粒物的人为源标志。但在粒径为2.5μm 的大气颗粒物中, EF>5 即为人为源的标志[12]。
2.1.2元素分布类型及成因
在世界范围内的城市土壤中重金属元素含量普遍偏高, 但在不同的城市中变化很大, 这依赖于城市的历史年代、经济发达程度、代写硕士论文 不同的用地类型、汽油的添加济成分、车辆元件的组成等, 在城市环境元素分布及成因的解释中应综合分析以上各种因素。城市交通是产生重金属元素的重要途径之一, 如Cu 通常是汽车润滑剂的组分, 而Pb 曾一度是汽油的防爆剂, Sb 可以作为闸垫材料。因此, 交通是城市中Cu、Pb、Zn、Sb 等元素的主要来源。Romic 等发现, 燃烧和道路交通, 尤其是轮胎的磨损和消耗是城市区域内Cd 的主要污染源[7];Moller 等在大马士革调查时认为交通是表层土壤中Cu、Pb、Zn 等重金属元素富集的主要原因[9]。与历史久远的工业化城市相比, 相对年轻的城市具有较低的重金属含量, 如非洲的哈博罗内市[4]比悠久的重工业城市伦敦[2]、柏林[3]的表层土壤的重金属含量偏低[9], Li 等发现, 城市公园土壤中Cu, Pb和Zn 的含量与公园的年龄之间具有明显的相关性[1],即城市历史越长, 重金属含量越高。元素在表层土壤中的分布明显依赖于城市用地及工业类型, 如Birke 等[3]在柏林市调查中发现, Al,K, Si, Na, Sc 和Ti 主要是自然源, 即与母质的组成有关; 工业区域倾向于被Cu, Cd, Zn, Pb, Hg 污染; 农业区由于大量使用化肥和污泥, 富集Cd, F, Cr, Hg, Ni,Zn 和P 元素。尽管非洲的哈博罗内市比较年轻, 但它的不同区域仍然受Cr, Co, Ni, Cu, Zn 和Pb 等元素不同程度的污染。如城市中心和工业区的Co, Cu, Pb,Zn 等元素污染, 农业土壤中的Cr,Ni 污染, 居民区及工业区的Zn 污染[4]。
2.2 城市环境地球化学评价
2.2.1污染程度评价
将郊区土壤背景值与城市各功能区含量进行比较是了解城市环境污染水平最常用、最直接的方法。如瑞典斯德哥你摩市Hg 在市中心土壤中的含量是郊区背景值的20 倍, Pb 和Zn 在市区中的含量也远远高于背景值[5]; 在柏林老工业区, Cu 的最大值是背景值的2050 倍, Cd 是1638 倍, Hg 是1780 倍[3]。通过同一城市不同功能区内元素含量的对比以及不同城市之间的对比, 也常用来评价城市环境的污染水平。
农业土壤与城区内土壤不同, 除了农用化学品外,大气沉降、污水灌溉、垃圾填埋场等都会对农田中的重金属积累产生重要影响。对这部分的污染评价, 比较有效的评价方法是地质积累指标法(Igeo)和富集因子法(EF)。对大气污染物的评价, 富集因子法尤为有效。
2.2.2生态效应评价
( 1) 气溶胶的生态效应评价。大气固体悬浮物的粒径大小具有来源特征, 粗粒源于陆地尘埃, 而细粒源于燃料的燃烧[13]。颗粒越细, 危害越大, 极细的颗粒物可通过呼吸进入人体, 粒径小于10μm (PM10), 尤其是小于<2.5μm(PM2.5)的粒子, 会导致哮喘, 甚至死亡[14]。因此, 生物圈气溶胶中的重金属含量具有高度的生态风险性。
( 2) 元素生物有效性评价。研究元素生态效应的常规方法是连续偏提取法, 在城市环境调查中, 也有相关的研究实例, 如Zhai等调查发现, 代写医学论文 由交通引起的人为源的Pb主要以有机质吸附和铁- 锰氧化物态存在[4]; 香港和伦敦的路尘中, Pb, Zn主要以铁锰氧化物相存在, Cu主要以有机质吸附态存在[15]。影响降尘中元素有效性的重要因素是降雨的pH值。一般情况下,在较低pH条件下元素易于溶解, Alloway等报道其可溶性Cd平均为总量( 降尘量) 的60%[16]; 这可能是由于人类活动输入的硫和氮的氧化物使雨水酸化。因此,在易出现酸雨的城市区域具有较大的生态风险性。
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典理学类城市环境地球化学调查研究方法综述(2)在线全文阅读。