∴所含碳水化合物质量的最大值为180克.
6. (2011湖南邵阳,22,8分)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛。
规则一:合唱团的总人数不得少于50人,且不得超过55人。 规则二:合唱团的队员中,九年级学生占合唱团总人数的年级学生。
请求出该合唱团中七年级学生的人数。 【答案】解:∵八年级学生占合唱团总人数
11,八年级学生占合唱团总人数,余下的为七241,∴合唱团的总人数是4的倍数。 4又∵合唱团的总人数不得少于50人,且不得超过55人,∴合唱团的人数是52人。 ∴七年级的人数是
1×52=13人。 47. (2011四川内江,加试6,12分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.
(1)每台电脑机箱、液晶显示器的进价各是多少元?
(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少? 【答案】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,得
?10x?8y?7000?x?60,解得 ???2x?5y?4120?y?800答:每台电脑机箱的进价是60元,液晶显示器的进价是800元 (2)设购进电脑机箱z台,得
?60x?800(50?x)?22240,解得24≤x≤26 ?10x?160(50?x)?4100?因x是整数,所以x=24,25,26
利润10x+160(50-x)=8000-150x,可见x越小利润就越大,故x=24时利润最大为4400元
答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。第①种方案利润最大为4400元。
8. (2011重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处
理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水. (1)请你计算每台甲型设备和每台乙型设备的价格各是多少元? (2)请你求出用于二期工程的污水处理设备的所有购买方案;
(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?
(总费用=设备购买费+各种维护费和电费)
【答案】:25. 解:(1)设一台甲型设备的价格为x万元,由题3x?2?75%x?54,解得x=12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元
?12a?9(8?a)?841(2)设二期工程中,购买甲型设备a台,由题意有?,解得:?a?4
2?200a?160(8?a)?1300由题意a为正整数,∴a=1,2,3,4 ∴所有购买方案有四种,分别为 方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台 方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台 (3)设二期工程10年用于治理污水的总费用为W万元
w?12a?9(8?a)?1?10a?1.5?10(8?a)化简得: w?-2a+192,
∵W随a的增大而减少 ∴当a=4时, W最小(逐一验算也可)
∴按方案四甲型购买4台,乙型购买4台的总费用最少.
9. (2011四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。现有A型、B型、C型三种汽车可供选择。已知每种型号汽车可同时装运2种土特产,且每辆车必须装满。根据下表信息,解答问题。
A B C 车型 特产 苦荞茶 青花椒 野生蘑菇
车型 每2
辆2 A型
车运1500 1800 2000 费每
4 2 B型 (吨) (量 元) 1 6 C型
(1) 设A型汽车安排x辆,B 型汽车安排y辆,求y与x之间的函数关系式。 (2) 如果三种型号的汽车都不少于4辆,车辆安排有几种方案?并写出每种方案。 (3) 为节约运费,应采用(2)中哪种方案?并求出最少运费。 【答案】
解:⑴ 法① 根据题意得
4x?6y?7?21?x?y??120 化简得:y??3x?27 法② 根据题意得
2x?4y?2x?21?x?y??2y?6?21?x?y??120
化简得:y??3x?27
?x?4? ⑵由?y?4 得
?21?x?y?4? 解得 5?x?7?x?4? ??3x?27?4?21?x??3x?27?4???2 。 3 ∵x为正整数,∴x?5,6,7
故车辆安排有三种方案,即:
方案一:A型车5辆,B型车12辆,C型车4辆
方案二:A型车6辆,B型车9辆,C型车6辆
方案三:A型车7辆,B型车6辆,C型车8辆
⑶设总运费为W元,则W?1500x?1800??3x?27??2000?21?x?3x?27? ?100x?36600 ∵W随x的增大而增大,且x?5,6,7 ∴当x?5时,W最小?37100元
答:为节约运费,应采用 ⑵中方案一,最少运费为37100元。 10.(2011湖北黄冈,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现
有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.
⑴设从A水库调往甲地的水量为x万吨,完成下表
调入地 甲 乙 总计 水量/万吨调出地
A x 14 B 14
15 13 28 总计
⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨?千米)
【答案】⑴(从左至右,从上至下)14-x 15-x x-1 ⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275 解不等式1≤x≤14
所以x=1时y取得最小值 ymin=1280
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典中考初中2024年全国各地中考数学试卷分类汇编第6章不等式(2)在线全文阅读。
相关推荐: