课时作业(二)
1.将5名大学毕业生全部分配给3所不同的学校,不同的分配方式的种数有( )
A.8种 C.125种 答案 D
解析 每名大学生有三种不同的分配方式,所以共有35种不同的分配方式.
2.从集合A={0,1,2,3,4}中任取三个数作为二次函数y=ax2+bx+c的系数a,b,c.则可构成不同的二次函数的个数是( ) A.48 C.60 答案 A
解析 由于是二次函数,需分三步确定系数a,b,c,a有除0之外的四种选法,b有四种选法,c有三种选法,故有4×4×3=48种.
3.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有( )
A.24种 C.12种 答案 B
解析 (直接法):黄瓜种在第一块土地上有3×2×1=6种.同样,黄瓜可种在第二块、第三块土地上,共有不同的种法有6×3=18种.
B.18种 D.6种 B.59 D.100 B.15种 D.243种
(间接法):4种选3种,种在三块地上有4×3×2=24种,其中不种黄瓜有3×2×1=6种,共有不同种法24-6=18种.
4.已知异面直线a,b上分别有5个点和8个点,则经过这13个点可以确定不同的平面个数为( )
A.40 C.10 答案 B
解析 根据一条直线与直线外一点可确定一个平面,因此可分为两类;
第一类,直线a与直线b上的点所确定的平面有8个平面;第二类,直线b与直线a上的点所确定的平面有5个,根据分类加法计数原理,共有8+5=13个不同平面.
5.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有( )
A.336种 C.24种 答案 A
解析 我们可以一本一本的插入,先插一本,可在原来5本书形成的6个空当中插入,共有6种插入的方法;然后再插第二本,这时书架上有6本书形成7个空当,有7种插入方法;再插最后一本,有8种插法,所以共有6×7×8=336种不同的插法.
6.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是( )
A.14
B.23 B.120种 D.18种 B.13 D.16
C.48 答案 C
D.120
解析 分两步:第一步,取多面体,有5+3=8种不同的取法,第二步,取旋转体,有4+2=6种不同的取法.所以不同的取法种数是8×6=48种.
7.如图所示,用不同的五种颜色分别为A,B,C,D,E五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以反复使用,也可不使用,则符合这些要求的不同着色的方法共有( )
A.500种 C.540种 答案 C
解析 按照分步计数原理,先为A着色共有5种,再为B着色共有4种(不能与A相同),接着为C着色有3种(不与A,B相同),同理依次为D,E着色各有3种,所以不同着色的方法共有N=5×4×33=540(种).
8.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系第一、第二象限中的不同点的个数有( )
A.18个 C.14个 答案 C
B.16个 D.10个 B.520种 D.560种
解析 此问题可分两类:
①以集合M中的元素作为横坐标,集合N中的元素作为纵坐标,集合M中任取一个元素的方法有3种,要使点在第一、第二象限内,则集合N中只能取5,6两个元素中的一个,有2种方法,根据分步乘法计数原理有3×2=6个;
②以集合N中的元素作为横坐标,集合M中的元素为纵坐标,集合N中任取一个元素的方法有4种,要使点在第一、第二象限内,则集合M中只能取1,3两个元素中的一个,有2种方法,根据分步乘法计数原理,有4×2=8个.
综合以上两类,利用分类加法计数原理,共有6+8=14个.故选C.
9.从数字1,2,3,4,5,6中取两个数相加,其和是偶数,共得________个偶数.
答案 4
解析 分两类,3个奇数两两相加,3个偶数两两相加,都得偶数,又1+5=2+4,3+5=2+6,所以可得不同的偶数有3+3-2=4个.
10.从正方体的6个表面中取3个面,使其中两个面没有公共点,则共有________种不同的取法.
答案 12
解析 分两步完成这件事,第一步取两个平行平面,有3种取法;第二步再取另外一个平面,有4种取法,由分步计数原理共有3×4=12种取法.
11.动物园的一个大笼子里,有4只老虎,3只羊,同一只羊不能被不同的老虎分食,问老虎将羊吃光的情况有多少种?
解析 因为3只羊都被吃掉,故应分为三步,逐一考虑.每只羊都可能被4只老虎中的一只吃掉,故有4种可能,按照分步乘法计数
原理,故有4×4×4=43=64种.
12.(2015·石家庄高二检测)某校高二年级一班有优秀团员8人,二班有优秀团员10人,三班有优秀团员6人,学校组织他们去旅游.
(1)推选1人为总负责人,有多少种不同的选法? (2)每班选1人带队,有多少种不同的选法?
(3)从他们中选出2个人管理生活,要求这2个人不同班,有多少种不同的选法?
解析 (1)分三类.
第一类:从一班的8名优秀团员中产生,有8种不同选法;第二类:从二班的10名优秀团员中产生,有10种不同选法;第三类:从三班的6名优秀团员中产生,有6种不同选法.由分类加法计数原理得N=8+10+6=24种不同的选法.
(2)分三步:
第一步:从一班的8名优秀团员中选1人带队,有8种不同选法; 第二步:从二班的10名优秀团员中选1人带队,有10种不同选法;
第三步:从三班的6名优秀团员中选1人带队,有6种不同选法. 由分步乘法计数原理得N=8×10×6=480种不同的选法. (3)分三类,每一类可分为两步.
第一类:从一班、二班的优秀团员中各选1人,有8×10=80种不同选法;
第二类:从二班、三班的优秀团员中各选1人,有10×6=60种不同选法;
第三类:从一班、三班的优秀团员中各选1人,有8×6=48种不同选法.
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文选修2-3课时作业2在线全文阅读。
相关推荐: