代谢组学方法与应用(许国旺)张强

来源:网络收集 时间:2025-09-14 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第1章绪论

随着人类基因组测序工作的完成,基因功能的研究逐渐成为热点,随之出现了一系列的“组学”研究,包括研究转录过程的转录组学(transcriptomics)、研究某个生物体系中所有蛋白质及其功能的蛋白质组学(proteomics)及研究代谢产物的变化及代谢途径的代谢组学(metabolomics或metabonomics)(图1-1)。

代谢组学是众多组学中的一种,是随着生命科学的发展而发展起来的。与其

他组学不同,代谢组学是通过考察生物体系(细胞、组织或生物体)受刺激或扰动后(如将某个特定的基因变异或环境变化后),其代谢产物的变化或其随时间的变化,来研究生物体系的一门科学[1]。所谓代谢组(metabolome)是基因组的下游产物也是最终产物,是一些参与生物体新陈代谢、维持生物体正常功能和生长发育的小分子化合物的集合,主要是相对分子质量小于1000的内源性小分子。代谢组中代谢物的数量因生物物种不同而差异较大,据估计,植物王国中代谢物的数量在200000种以上,单个植物的代谢物数量在5000~25000,甚至简单的拟南芥(Arabidopsisthaliana)也产生约5000种代谢产物,远远多于微生物中的代谢产物(约1500种)和动物中的代谢产物(约2500种)[2]。实际上,在人体和动物中,由于还有共存的微生物代谢、食物及其代谢物本身的再降解,到目前为止,还不能估计出到底有多少种代谢产物,浓度分布范围有7~9个数量级。因此对代谢组学的研究,无论从分析平台、数据处理及其生物解释等方面均面临诸多挑战。本章对代谢组学发展的历史、国内外现状、研究方法、典型应用领域及研究热点等给予了介绍。 1.1代谢组学简介

1.1.1代谢组学发展的时代背景

生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及

各种生物之间和生物与环境之间相互关系的科学。自从1953年Watson和Crick建立了DNA双螺旋结构模型后,生命科学研究的面貌便焕然一新。在此基础上发展的分子生物学使得生命的基本问题,如遗传、发育、疾病和进化等,都能从分子机制上得到诠释。生物学研究进入了对生命现象进行定量描述的阶段。分子生物学的飞速发展极大地推动了人们从分子组成水平对生物系统进行深人的了

解。基因组计划向人们展示了包括大肠杆菌、酵母、线虫、果蝇、小鼠等模式生物以及人类的所有遗传信息的组成,生命的奥秘就存在于这些序列中。技术上的突破使得基因组数据的获得已经不再是生命科学的难点。人类基因组计划的基本完成标志着后基因组时代的到来,在这一时期,基因组功能分析成为生命科学的主要任务,核心思想是以整体和联系的观点来看待生物体内的物质群,研究遗传信息如何由基因经转录向功能蛋白质传递,基因功能如何由其表达产物蛋白质以及代谢产物来体现。继基因组(genome)后、转录组(transcriptome)、蛋白质组(proteome)等相继出现,并相应形成“omics”学说,如转录组学(transcriptom-ics)、蛋白质组学(proteomics)等。但是基因与功能的关系是非常复杂的,还不能用转录组、蛋白质组来表达生物体的全部功能。生物体内存在着十分完备和精细的调控系统以及复杂的新陈代谢网络,它们共同承担着生命活动所需的物质与能量的产生与调节。在这一复杂体系中,既有直接参与物质与能量代谢的糖类、脂肪及其中间代谢物,也有对新陈代谢起重要调节作用的物质。这些物质在体内形成相互关联的代谢网络,基因突变、饮食、环境因素等都会引起这一网络中某个或某些代谢途径的变化,这类物质的变化可以反映机体的状态。起调节作用的代谢物,从生理功能上来说包括神经递质、激素和细胞信号转导分子等,从化学组成上来说包括多肽、氨基酸及其衍生物、胺类物质、脂类物质和金属离子等,这些调节物质绝大部分都是小分子物质,在植物与微生物中还存在着大量的次生代谢产物。这些分子广泛分布于体内,对多种生理活动都具有普遍和多样的调节作用,仅微量存在就能够发挥很强的生物效应。不同活性的分子或协同、或拮抗、或修饰而相互影响,在生物学效应以及信号转导和基因表达调控上形成复杂的网络,承担着维持机体稳态的重要使命,是神经内分泌和免疫网络调节的物质基础和自稳态调节的最重要成分。转录组、蛋白质组的研究很难涵盖这些非常活跃而且非常重要的生命活性物质,然而对这类物质的生理和病理生理学意义如果不能充分认识,就不可能真正阐明生命功能活动的本质。传统研究方法是以生理学和药理学实验方法为主,缺乏高通量的研究技术,难以建立生物小分子物质复杂体系的研究模式。在这种情况下,代谢组(metabolome)和代谢组学(metabolomics或metabonomics)应运而生了,并成为系统生物学的一个重要突破口[3],代谢处于生命活动调控的末端,因此代谢组学比基因组学、蛋白

质组学更接近表型。

从广义的代谢组学的意义上来说,代谢组学的历史是相当长的,很早以前人

们就已经对生物样品中的某些靶标化合物进行分析以了解生命机体的状态。目前代谢组学所采用的一些技术平台,如NMR和色谱技术以及质谱技术也有比较长的应用历史。严格意义上的代谢组学(对限定条件下的特定生物样品中所有代谢组分的定性和定量)从提出到现在只有短短数年的时间。现在一般认为代谢组学源于代谢轮廓(metabolicprofiling)分析,在代谢轮廓分析中体现了代谢组学的“尽可能多地分析生物样本中的代谢产物”这一理念的萌芽。在这里,我们对从代谢轮廓分析发展到代谢组学这一过程[4](图1-2)做一简单的介绍。

早在20世纪70年代初,Baylor医学院就发表了有关代谢轮廓分析方面的论

文,在他们的工作中采用了GC-MS的方法对多种类固醇、有机酸以及尿中药物的代谢物进行了分析,并将这种多组分分析的方法称为代谢轮廓分析,开创了对复杂样品进行代谢轮廓分析的先河。此后代谢轮廓分析广泛应用于血、尿等生物样本中代谢物的定性与定量分析,以对疾病进行筛选和诊断。在临床上使用GC-MS的方法来诊断疾病的方法一直沿用到今天。紧接着,人们把重点主要放在分析的自动化上,并将GC的方法用于其他类型化合物的分析。进入20世纪80年代,人们开始使用高效液相色谱和核磁共振的技术来进行代谢轮廓的分析,如1982年,荷兰应用科学研究所(TNO)的vanderGreef[5]在国际上首先采用质谱对尿中代谢指纹进行研究。1983年,Sadler、Buckingham和Nicholson发表了第一个有关全血和血浆的1H-NMR谱[6]。在1986年,色谱杂志Journal of Chromatography发表了一期有关代谢轮廊(metabolic profiling)分析的专辑。进入90年代,代谢轮廓分析技术一直平稳发展,每年都有10~15篇的论文发表,不过这一时期人们的目标更多地集中于某些特定的标靶化合物上。在90年代初,Sauter等人用基于GC-MS代谢轮廓分析的方法研究了不同除草剂对大麦的影响,这种用代谢轮廓分析来研究各种因素对生物功能的影响的研究思路随即被人们认可。1997年,Steven Oliver研究小组提出了通过对代谢产物的数量和定性来评估酵母基因的遗传功能及其冗余度,并率先提出了代谢组的概念[7]。1999年,

J.Nicholson等提出metabonomics的概念[8],并在疾病诊断、药物筛选等方面做了大量卓有成效的工作[1,9~11]。接着,德国的Max-Planck-Institut的科学家们开始了植物代谢组学的研究[12],使代谢组学得到了极大的充实。 代谢组学的特点为: (1) 关注内源化合物。

(2) 对生物体系中的小分子化合物进行定性定量研究。

(3) 上述化合物的上调和下调指示了与疾病、毒性、基因修饰或环境因子的影响。

(4) 上述内源性化合物的知识可以被用于疾病诊断和药物筛选。 与转录组学和蛋白质组学比较,代谢组学有以下优点[13]:

(1)基因和蛋白质表达的微小变化会在代谢物上得到放大,从而使检测更容易。 (2)代谢组学的研究不需建立全基因组测序及大量表达序列标签(EST)的数 据库。

(3)代谢物的种类要远小于基因和蛋白质的数目(每个组织中大约为1〇3数量级,即使在最小的细菌基因组中也有几千个基因)。

(4)研究中采用的技术更通用,这是因为给定的代谢物在每个组织中都是一样的 缘故。

代谢组学是近几年才发展的一门新兴的技术,如何对这种技术进行命名曾经

有争 议,国际上存在metabolomics和metabonomics两个词汇,一般认为,metabolomics是通过考察生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后)代谢产物 的变化或其随时间的变化,来研究生物体系的代谢途径的一种技术。而metabonomics 是生物体对病理生理刺激或基因修饰产生的代谢物质的质和量的动态变化的研究。前者 一般以细胞作研究对象,后者则更注重动物的体液和组织。在植物、微生物领域一般用metabolomics,在药物研究和疾病诊断中,一般用metabonomics。现在这两个定义已经模糊化[6],没有特别的区分。

1.1.2代谢组学研究现状

目前,代谢组学正日益成为生命科学研究的重点之一,在世界范围越来越多

的科学工作者已加入到代谢组学的研究中。这可以从以下几个方面体现。

1.1.2.1 有关代谢组学的文献数量增长迅速,学术活动活跃

“Web of knowledge”是检索科学文献最好的网站之一,在该网站以

metabolomics or metabonomics 和 metabolic profiling 为主题词进行检索,可得图 1-3。以 metabolomics or metabonomics 检索可得 1950 篇,以 metabolic profiling 检索可得 4581 篇 (2008 年 1 月 5 日)。类似地,从 “Web of knowledge” 使用 proteomics 和 metabolome 分别检索到总文献9361篇和1000篇(图1-4),发现引用次数分别为112 566和8355,平均每篇引用分别为12. 02和8.35,h指数分别为113和39。从中可知,尽管代谢组 学比较年轻,是新兴技术,文献的总量不多,但与蛋白质组学相比,它们具有非常类似的发展趋势。

代谢组学的学术活动也在蓬勃进行,2001年12月在美国举行了题为

“Metabolic Profiling: Pathways in Discovery”的专题会议,一年后(2002年11月)在加利福尼亚州召开的系统组学国际会议也特别强调了代谢组学。有关植物代谢组学方面的会议更多,2002年4月、2003年4月、2004年6月及2006年7月分别在荷兰、德国、美国和英国举行了第一届、第二届、第三届和第四届植物代谢组学国际会议,会议就分析技术 的发展、代谢数据的生物信息和数据统计分析、标准化及数据库、代谢组学在解决生物技术问题中的作用和发展农作物等方面进行了广泛的探讨。2008年7月,国际植物代谢组学会议将在日本的横滨召开。

为与代谢组学的迅猛发展相适应,国际代谢组学学会

(http://metabolomicssociety.org/)应运而生,并创刊了专业杂志Metabolomics(http://mebo.edmgr.com/)。2005年6月在日本召开了第一届代谢组学学会的国际会议(The First International Conference of the Metabolomics Society)。在取得成功的基础上,2006 年和 2007 年分别在美国和英国召开了第二届、第三届代谢组学学会的国际会议。这些会议的召开加速了代谢组学的发展。

国内在这一领域也紧跟国际前沿,中国科学院大连化学物理研究所在2001

年学科 规划时就将代谢组学列为中国科学院知识创新工程(二期)重要方向予以支持。自 2003年较全面地介绍代谢组学的综述发表后[14],又陆续有许多综述性的文章发表,内容涉及代谢组学的技术平台以及在医药、疾病、植物学等诸多方面的应用[15~18]。2003 年9月,中国科学院生物局在上海召开了 “植物、微

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文代谢组学方法与应用(许国旺)张强在线全文阅读。

代谢组学方法与应用(许国旺)张强.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/fanwen/1047340.html(转载请注明文章来源)

相关推荐:

Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219