平方差公式和完全平方公式(讲义)
? 课前预习
1. (1)对于多项式(x?4)和多项式(x?4),完全相同的项是________,只有
符号不同的项是________;
(2)对于多项式(?x?4)和多项式(x?4),完全相同的项是________,只有符号不同的项是________;
(3)对于多项式(a?b?c)和多项式(?a?b?c),完全相同的项是_________,只有符号不同的项是__________.
2. 利用幂的运算法则证明(?a?b)2?(a?b)2.
证明过程如下:
(?a?b)2???(a?b)?2?(___)2?(____)2 ?__________即(?a?b)2?(a?b)2
请你参照上面的方法证明(?a?b)2?(a?b)2.
3. 计算:
①(a?b)(a?b);
③(a?b)2.
②(a?b)2;
? 知识点睛
1. 平方差公式:___________________________.
2. 完全平方公式:_________________________;
_________________________. 口诀:首平方、尾平方,二倍乘积放中央.
? 精讲精练
1. 填空:
①(x?4)(x?4)?( )2?( )2?_________; ②(3a?2b)(3a?2b)?( )2?( )2?__________; ③(?m?n)(m?n)?( )2?( )2?_____________;
?1??1?④??x?2y??x?2y?=_______-_______=___________; ?4??4?⑤(an?b)(an?b) ?_______-_______=__________; ⑥(3a?b?3)(3a?b?3)?( )2?( )2; ⑦(3a?b?3)(3a?b?3) ?( )2?( )2;
⑧(m+n)(m-n)(m2+n2)=( )(m2+n2)=( )2-( )2=_______; ⑨(2x?3y)( )?4x2?9y2; ⑩(x?3y)( )?9y2?x2. 2. 计算:
①(ab?8)(ab?8);
③(2a?b)(2a?b)(4a2?b2);
⑤20152?2014?2016.
3. ①(2x?5y)2?( )2?2( )( )?( )2?_______________;
④103?97;
1??1??②?2a?b???b?2a?;
3??3??1??1②?m???( )2?2( )( )?( )2?___________;
2??32
1??③?mn?n??_____________________=______________;
2??④(?x?y)2?( )2?________________; ⑤(?m?n)2?( )2?________________; ⑥(?3x?4y)2=(2)2?______________________; )2?______________________;
1??⑦??4x?y?=(2??2⑧x2?4y2?_________?(x?2y)2. 4. 下列各式一定成立的是( )
A.(2a?b)2?4a2?2ab?b2
2B.(x?y)2?x2?y2
?1?1C.??a?b??a2?ab?b2 D.(?x?y)(x?y)?x2?y2
?2?45. 计算:
①(?2t?1)2;
③(a?b?c)2;
6. 运用乘法公式计算:
①(2x?y)2?4(x?y)(x?y);
②(a?b)(?a?b)?(a?b)(?a?b);
②(m?2n)2?4n2;
④1022.
③(x?2y?3)(x?2y?3);
⑤(a?b)3;
⑦1022?982;
7. 若(3x?y)2?ax2?bxy?y2,则a=______,b=_________. 8. 若(2x?y)2?a2x2?4xy?y2,则a=______. 9. 若(ax?y)2?9x2?6xy?y2,则a=______. 10. 若(x?ky)2?x2?8xy?16y2,则k=______. 11. 若x2?axy?9y2是完全平方式,则a=______. 12. 若4x2?4xy?my2是完全平方式,则m=______.
⑧(n2?1)2?(n2?1)2.
⑥(?a?b?c)(a?b?c); ④(?a?b?c)(a?b?c);
【参考答案】 ? 课前预习
1.(1)x;4,-4;(2)-4;x,?x;(3)b-c;a,-a 2.略
3.①a2?b2 ②a2?2ab?b2 ③a2?2ab?b2
? 知识点睛
1. (a?b)(a?b)?a2?b2
2. (a?b)2?a2?2ab?b2,(a?b)2?a2?2ab?b2
? 精讲精练
1. ①x,4,x2?16
②3a,2b,9a2?4b2 ③?n,m,n2?m2
1?1?④(?2y)2,?x?,4y2?x2
16?4?⑤ ,b2,a2n?b2 (an) ⑥3a?b,3 ⑦3a,b?3
⑧m2?n2,m2,n2,m4?n4 ⑨2x?3y ⑩3y?x 2. ①a2b2?64
③16a4?b4 ⑤1
221②b2?4a2 9④9 991
3. ①2x,2x,5y,5y,4x2?20xy?25y2
1111111②m,m,,,m2?m?
9342233111③(mn)2?2?mn?n?(n)2;m2n2?mn2?n2
224④x?y,x2?2xy?y2 ⑤m?n,m2?2mn?n2 ⑥3x-4y,9x2?24xy?16y2
11y;16x2?4xy?y2 24⑧(?4xy) ⑦4x?4. C
5. ①4t2?4t?1
②m2?4mn
③a2?b2?c2?2ab?2ac?2bc ④10 404
6. ①?4xy?5y2
②2ab?2b2 ③x2?4y2?12y?9 ④c2?a2?2ab?b2 ⑤a3?b3?3a2b?3ab2
⑥?a2?2ab?b2?2ac?2bc?c2 ⑦800 ⑧4n2 7. 9;-6 8. ±2 9. -3 10. -4 11. ?6 12. 1
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库平方差公式和完全平方公式(讲义及答案)在线全文阅读。
相关推荐: