计算机,昆明理工
图像的二值化处理就是将图像上的点的灰度置为0 或255,也就是使整个图像呈现出明显的黑白效果。即将256 个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
图像二值化是指用灰度变换来研究灰度图像的一种常用方法,即设定某一阈值将灰度图像的像素分成大于阈值的像素群和小于阈值的像素群两部分。例如输人灰度图像函数为f (x, y),输出二值图像函数为g(x, y),则有公式:
可能保存图像信息,又要尽可能减少背景和噪声的干扰,这是选择阈值的原则。 在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素的值为0 或255 的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。二值图像在图像分析中应用非常广泛,二值图像就是指只有两个灰度级的图像,二值图像具有存储空间小,处理速度快,可以方便地对图像进行布尔逻辑运算等特点。更重要的是,在二值图像的基础上,还可以进一步对图像处理,获得该图像的一些几何特征或者其他更多特征。
1.2 全局阈值法实现二值化原理:
全局阈值法是指在二值化过程中只使用一个全局阈值T 的方法。它将图像的每个像素的灰度值与T 进行比较,若大于T ,则取为前景色(白色);否则,取为背景色。根据文本图像的直方图或灰度空间分布确定一个阈值,以此实现灰度文本图像到二值图像的转化。其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。阈值分割法的结果很大程度上依赖于对阈值的选择,因此该方法的关键是如何选择合适的阈值。
典型的全局阈值方法包括Otsu 方法、最大熵方法等。全局阈值法算法简单,对于目标和背景明显分离、直方图分布呈双峰的图像效果良好,但对于由于光照不均匀、噪声干扰较大等原因使直方图分布不呈双峰的图像,二值化效果明显变差。
Ostu算法源代码:
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库图像分割(2)在线全文阅读。
相关推荐: