2024年广东省广州市中考数学试卷(4)

来源:网络收集 时间:2025-06-15 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

【解答】证明:在△AED和△CEB中,

∴△AED≌△CEB(SAS),

∴∠A=∠C(全等三角形对应角相等).

【点评】此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.

19.(10.00分)(2018?广州)已知T=(1)化简T;

(2)若正方形ABCD的边长为a,且它的面积为9,求T的值. 【分析】(1)原式通分并利用同分母分式的加法法则计算即可求出值; (2)由正方形的面积求出边长a的值,代入计算即可求出T的值.

第18页(共28页)

+.

【解答】解:(1)T=+==;

(2)由正方形的面积为9,得到a=3, 则T=.

【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

20.(10.00分)(2018?广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.

(1)这组数据的中位数是 16 ,众数是 17 ; (2)计算这10位居民一周内使用共享单车的平均次数;

(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;

(2)根据平均数的概念,将所有数的和除以10即可; (3)用样本平均数估算总体的平均数.

【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17, 故答案是16,17; (2)

=14,

答:这10位居民一周内使用共享单车的平均次数是14次; (3)200×14=2800

答:该小区居民一周内使用共享单车的总次数为2800次.

【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.

21.(12.00分)(2018?广州)友谊商店A型号笔记本电脑的售价是a元/台.最

第19页(共28页)

近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.

(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元? (2)若该公司采用方案二购买更合算,求x的取值范围.

【分析】(1)根据两个方案的优惠政策,分别求出购买8台所需费用,比较后即可得出结论;

(2)根据购买x台时,该公司采用方案二购买更合算,即可得出关于x的一元一次不等式,解之即可得出结论.

【解答】解:设购买A型号笔记本电脑x台时的费用为w元, (1)当x=8时,

方案一:w=90%a×8=7.2a,

方案二:w=5a+(8﹣5)a×80%=7.4a,

∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元; (2)∵若该公司采用方案二购买更合算, ∴x>5,

方案一:w=90%ax=0.9ax,

方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax, 则0.9ax>a+0.8ax, x>10,

∴x的取值范围是x>10.

【点评】本题考查了一元一次不等式的应用,解题的关键是:(1)根据优惠方案,列式计算;(2)找准不等量关系,正确列出一元一次不等式.

22.(12.00分)(2018?广州)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.

(1)求y1关于x的函数解析式,并画出这个函数的图象;

(2)若反比例函数y2=的图象与函数y1的图象相交于点A,且点A的纵坐标为

第20页(共28页)

【点评】此题是二次函数综合题,主要考查了一元二次方程的根的判别式,圆周角定理,锐角三角函数,勾股定理,对称性,求出点A,B,C的坐标是解本题的关键.

25.(14.00分)(2018?广州)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC. (1)求∠A+∠C的度数;

(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由; (3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.

【分析】(1)利用四边形内角和定理计算即可;

(2)连接BD.以BD为边向下作等边三角形△BDQ.想办法证明△DCQ是直角三角形即可解决问题;

(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.想办法证明∠BEC=150°即可解决问题; 【解答】解:(1)如图1中,

第26页(共28页)

在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠C=30°, ∴∠A+∠C=360°﹣60°﹣30°=270°.

(2)如图2中,结论:DB2=DA2+DC2.

理由:连接BD.以BD为边向下作等边三角形△BDQ.

∵∠ABC=∠DBQ=60°, ∴∠ABD=∠CBQ, ∵AB=BC,DB=BQ, ∴△ABD≌△CBQ, ∴AD=CQ,∠A=∠BCQ,

∵∠A+∠BCD=∠BCQ+∠BCD=270°, ∴∠DCQ=90°, ∴DQ2=DC2+CQ2, ∵CQ=DA,DQ=DB, ∴DB2=DA2+DC2.

(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.

第27页(共28页)

则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB, ∴RE2=RB2+EB2, ∴∠EBR=90°,

∴∠RAE+∠RBE=150°,

∴∠ARB+∠AEB=∠AEC+∠AEB=210°, ∴∠BEC=150°,

∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,

∵∠K+∠BEC=180°, ∴∠K=30°,∠BOC=60°, ∵OB=OC,

∴△OBC是等边三角形, ∴点E的运动路径=

=

【点评】本题考查四边形综合题、等边三角形的判定和性质、勾股定理以及逆定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.

第28页(共28页)

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典中考初中2024年广东省广州市中考数学试卷(4)在线全文阅读。

2024年广东省广州市中考数学试卷(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/147330.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219