2014年天津市和平区中考二模数学试卷
一、选择题(共12小题;共60分) 1. 的值为
A. B. C. D.
2. 如图所示图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是
A. B.
C. D.
3. 下列各运算中,正确的是
A. C.
B. D.
4. 纳米是非常小的长度单位, 纳米 米.某种病菌的长度约为 纳米,用科学记数法表示该病菌的长度,结果正确的是 A. 米
B. 米
C. 米
D. 米
5. 用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是
A. B.
C. D.
6. 在甲乙两班进行的定点投篮中,每班选八名选手,每人投篮 次.甲乙两班的比赛成绩(投中
次数)统计如表:甲乙两班投中次数的平均数都是 ,且 甲 ,
甲 乙
请你通过计算,选择正确的答案为
A. 乙 ,甲班成绩比乙班更稳定
第1页(共15 页)
B. 乙 ,甲班成绩比乙班更稳定 C. 乙 ,甲乙两班成绩一样稳定
D. 不能确定甲乙两班成绩哪一个更稳定
7. 在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色, 如此大量摸球实验后,小新发现其中摸出红球的频率稳定于 ,摸出黑球的频率稳定于 ,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于 ,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球 次,必有 次摸出的是红球.其中说法正确的是
A. ①②③ B. ①② C. ①③
D. ②③
8. 若点 , , 都在反比例函数 的图象上,则 , , 的大小关系为
A.
B.
C.
D.
9. 如图, 是 的内接三角形, 是 的直径, , 的平分线 交 于点 ,则 的度数是
A. B. C. D.
10. 如图,正方形 的对角线交于点 ,把边 , 分别绕点 , 同时逆时针旋转 得
四边形 ,下列两个结论
①四边形 为菱形; ② 四边形 正方形 .
A. 只有①正确 B. 只有②正确 C. ①②都正确 D. ①②都不正确
11. 某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条 米长的管道,所挖
管道长度 (米)与挖掘时间 (天)之间的关系如图,则下列说法中错误的是
第2页(共15 页)
A. 甲队每天挖 米
B. 乙队开挖两天后,每天挖 米 C. 甲队比乙队提前 天完成任务
D. 当 时,甲、乙两队所挖管道长度相同
12. 已知两点 , 均在抛物线 上,点 是该抛物线
的顶点.若 ,则 的取值范围是
C.
D.
A. B.
二、填空题(共6小题;共30分)
13. 计算:
.
14. 如图,一个正比例函数图象与一次函数 的图象相交于点 ,则这个正比例函数的表
达式是 .
15. 如图,点 , , , 在同一条直线上,点 , 在直线 的两侧, , ,请
添加一个适当的条件: ,使得 .
16. 如图所示,将正六边形放在直角坐标系中,中心与坐标原点重合,若 点的坐标为 ,则
点 的坐标为 .
第3页(共15 页)
17. 如图,在 中, ,点 , 分别在 和 上, 与 相交于点 .若
, 为 的中点,则 的值为 .
18. 如图,由 个边长都为 的小正三角形组成的网格.
(Ⅰ)图①中,连接相邻两个小正三角形的顶点 , ,则 的大小
;
(Ⅱ)在图②中画一个斜边长为 的直角三角形,且它的三个顶点都在网格顶点上.
三、解答题(共7小题;共91分)
19. 解方程: .
20. 某校为灾区开展了“献出我们的爱”赈灾捐款活动,九年级( )班 人积极参加了这次赈灾捐
款活动,
因不慎,表中数据有两处被墨水污染,已无法看清,但已知全班平均每人捐款 元. (1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程. (2)该班捐款金额的众数,中位数分别是多少?
(3)如果用九年级( )班捐款情况作为一个样本,请估计全校 人中捐款在 元以上
(包括 元)的人数是多少?
第4页(共15 页)
21. 在 中, ,以 为直径的 交 于点 ,交 于点 , 为 的切
线.
(1)如图 ①,求 的度数;
(2)如图 ②,过点 作 的平行线交 的延长线于点 ,连接 ,当 是等边三角
形时,求 的度数.
22. 如图所示,山坡上有一棵树 ,树底部 点到山脚 点的距离 为 米,山坡的坡角为
.小宁在山脚的平地 处测量这棵树的高,点 到测角仪 的水平距离 米,从 处测得树顶部 的仰角为 ,树底部 的仰角为 ,求树 的高度.(参考数值: , , )
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典中考初中2024年天津市和平区中考二模数学试卷在线全文阅读。
相关推荐: