23. 已知两个实数,其中一个比另一个大 ,设其中较小的数为 ,这两个实数的乘积为 .
(1)用含有 的代数式表示较大的数为 (直接填在横线上); (2) 与 的函数关系式为 (直接填在横线上); (3)这两个数各为多少时它们的乘积最小?
24. 将 放置在平面直角坐标系中,点 ,点 ,点 在边 上,连接 .
(1)如图①,过点 作 于点 , 为 的中点,连接 , ,设 ,求
的值;
第5页(共15 页)
(2)将图①中的 绕点 旋转,使 , , 三点在一条直线上,如图②,过点 作
交于点 .
①求 的值;
②若点 为线段 的中点, ,直接写出线段 的长度.
25. 如图 ,以一块等腰直角三角板的两条直角边为坐标轴建立直角坐标系, ,过点 ,
的抛物线对称轴为直线 ,抛物线与 轴的另一交点为点 .
(1)求该抛物线的解析式;
(2)如图 ,如果将三角板的直角顶点 在 轴上滑动,一直角边所在的直线过点 ,另一条
直角边与抛物线交点为 ,其横坐标为 ,试求点 的坐标;
第6页(共15 页)
(3)如图 ,点 为抛物线对称轴上一动点, 为抛物线在 轴上方图象上一点, 为平面内
一动点,是否存在 , , ,使得以 , , , 为顶点的四边形为正方形?若存在,求出 的坐标;若不存在,说明理由.
第7页(共15 页)
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典中考初中2024年天津市和平区中考二模数学试卷(2)在线全文阅读。
相关推荐: