历届“希望杯”全国数学邀请赛高二数学精选题详析(二)
题11 使不等式2x?a?arccosx的解是??212 ?x?1的实数a的取值范围是( )
225?612A、1? B、
22?2?3 C、? D、??
(第十一届高二第一试第6题)
解法1 由已知可知2x?arccoxs?a的解集是????1?,1?.在此区间上函数2??1?xf?x??2?arccosx是单调增的.因此a的值应当满足关系f????a,
?2??12?a?222??1??arccos?????.选B.
223??12解法2 原不等式同解于a?2x?arccosx,因为??x?1,所以
22?2?2,
x?2?3??arccosx?0,从而
22?2?3?2?arccosx?2,?a?x22?2?3.故选B.
评析 上述两种解法的实质是一回事.
关于此题,刊物上有数篇文章的观点值得商榷,现摘其部分加以分析. 一篇文章认为:“由已知不等式得a?2x?arccosx,欲使其解为???112?x?1,实际
上是对x?????1?xx而y?2?arccosx在??,,1?的任何x,a?2?arccosx恒成立,1?上
2?2??12?12是增函数,所以当x??时,ymin?2章
在
?1??arccos?????2?22?2?3.故选B.” m?f?x??n,另一篇文介绍了“设则
a?f?x??a?f?x?max?n;a?f?x??
a?f?x?min?m”后分析道:“令f?x??2?arccosx,当?x12?x?1时,
22?2?3?f?x?
?2,又a?f?x?,故a?22?2?3,选B. ”
还有一篇文章干脆将题目改为: 使不等式2x?a?arccosx的解是???12?x?1的实数a的取值范围是( )
A、???,1????22??? ??,?? B、??23?2????25??1???? D、???,??? C、??,??26?2????并作了如下解答:
“由已知得a?2x?arccosx,记f?x??2x?arccosx,因为x在???12?1?,1?时,f?x?2?单调增,所以ymin?2??1??arccos?????2?22?2?3.因此,a?22?2?3.选B.”
首先应当指出,第一、第三篇文章中说增函数f?x??2x?arccosx在????1?,1?上的最2?小值是
22?2?3是明显错误的.
12?x?1”等价于“对
这三篇文章共同的观点是“不等式2x?a?arccosx的解是??1??1?xx???,1?的任何x,a?2?arccosx恒成立”.按此观点,应当有a?f???,题目
?2??2?就错了(选择支中没有正确答案),又怎么能选B呢?第三篇文章也将题目改错了(选择支中同样没有正确答案).
问题的关键在于“不等式2?a?arccosx的解是?x1?1??x?1”与“对x???,1?的2?2?任何x,a?2?arccosx恒成立”到底是否等价.
为说明这一问题,我们只要看一个简单的例子就能明白了. 不等式x?2x?a?0的解集是??1,3?,求a的取值范围.
2x如果认为它等价于“x???1,3?时,不等式x?2x?a?0恒成立,求a的取值范围”,
2就会这样解:
22??x?2x?1??x?1?在??1,3?上的最小值是 由x?2x?a?0得a??x?2x,2221??3?1???3,?a??3为所求.而事实上,?8??3,但x?2x?8?0的解集却不是
2??1,3?,而是??2,4?,可见两者并不等价.
至此,我们可以得出结论:“关于x的不等式a?f?x?的解集是D”与“x?D时,关于x的不等式a?f?x?恒成立”不一定是等价的.
题12 已知a,b是正数,并且a1998?b1998?a1996?b1996,求证a2?b2?2.
(第十届高一培训题第74题)
证法1 若a与b中有一个等于1,那么另一个也等于1,此时,显然a2?b2?2. 若a?b且b?1,可将a1998?b1998?a1996?b1996改写为a1996?a2?1??b1996?1?b2?,由此推得0?b?1(若b?1,则a2?1?0,得a?1,这与a?b矛盾),由此得
a2?121?b?b?????a?1996,?
?b?0??1,0???a?a?b1996?1,?a?11?b22?1,得 a?b?2.
22证法2 2?a1998?b1998???a2?b2??a1996?b1996??a1998?a2b1996?a1996b2?b1998?
?a2?b2??a1996?b1996?.?a222?b与a1996?b1996同号,? ?a2?b2??a1996?b1996??0,
a1998?2?a21998?b1998???a?b2??a1996?b1996?.??b1998?a1996?b1996?0,?a?b?2.
2证法3
1996 由
2a21998?b1998?a1996?b1996及a,b?R?,得
a?b?22?a?ba1996??a2?b?1998?b1998
1996221996?a1998?b1998?a19981996b?ab21996a?b1998?1?ab?ab?ba19981998.?a1996b?ab221996?a1998?b1998
???a?b22??a1996?b1996?,又a?b22与a1996?b1996同
号,???a2?b2??a1996?b1996??0, a1996?b?ab?b221996a19981998?1,?a?b?2.
22评析 解决本题的关键在于如何利用已知条件. 证法1通过分类讨论证得a?b?2,较繁.由于a221998?b1998?a1996?b1996,故证法2
作差2?a1998?b1998???a2?b2??a1996?b1996?,只要此差大于等于0命题便获证.而证法3将
a?b22?a表示成
1996?ba19981996??a2?b2?b1998?①,便将问题转化成证①式小于等于2.证法2,3的作
法既有技巧性,又有前瞻性,简洁明了.
拓展 本题可作如下推广
推广1 设a,b?R,且a1998?b1998?a1996?b1996,则a2?b2?2.
推广2 设a,b?R,且a2n?2?b2n?2?a2n?b2n,其中n?N?,则a2?b2?2. 推广3 设a,b?R,且a2m?2n?b2m?2n?a2m?b2m,其中m,n?N?,则
a2n?b2n?2..
推广4 设a,b?R,且Aa2m?2n?Bb2m?2n?Aa2m?Bb2m,其中m,n?N?,
A,B?R,A?B?1,则Aa?2n?Bb2n?1②.
由于推广1,2,3都是推广4的特例,故下面证明推广4. 证明 ⑴当a?b?0时,②式显然成立. ⑵当a,b不全为零,有
?A?B??Aa2m?2n?Bb2m?2n???Aa2m?AB?a2m?2n?Bb2m??Aa2n?Bb2m2n?2n?a2mb2n?ab2n2m?b2m?2n??AB?a2m?b??a?b2n?.?a2m?b2m与
a2n?b2n同号,?AB?a2m?b2m??a2n?b2n??0,??A?B??Aa2m?2n?Bb2m?2n?
2m??Aa2m?Bb??Aa2n?Bb2n?.?Aa2m?2n?Bb2m?2n?Aa2m?Bb2m?0,?Aa2n?Bb2n?A?B?1.即当a,b不全为零时,②式也成立.综上,不等式②成立.
推广5 设a,b?Ra?b?2.
nn?,且am?n?bm?n?am?bm,其中m,n?Z,mn?0,则
推广6 设a,b?Ra?b?2.
nn?,且am?n?bm?n?am?bm,其中m,n?R,mn?0,则
推广7 设a,b?R,且Aa??m?n?Bbm?n?Aam?Bb, ?Bbnm其中m,n?R,mn?0,A,B?R,A?B?1,则Aan?1③.
由于推广5,6是推广7的特殊情形,故下面证明推广7. 证明 ?A?B??Aam?n?Bbm?n???Aam?Bbm??Aan?Bbn?
?AB?am?n?ab?ab?bmnnmm?n??AB?am?bm??an?bn?.?mn?0.由幂函数的性质,
可知am?bm与an?bn同号,
?AB?a?bmm??am?nn?bn??0,??A?B??Aamm?n?Bbnm?n???Aam?Bbm??Aan?Bbn?.
?Aam?n?Bb?Aa?Bbm?0,?Aan?Bb?A?B?1.即不等式③成立.
从变元个数进行推广可得 推广8 设xi?Rki?1??i?1,2,?,k?,且?xii?1km?nk??xii?1m,其中m,n?R,mn?0,则
?xi?k.
n推广9 设xi,Ai?R??i?1,2,?,k?,?Ai?1,且?Aixii?1i?1kkm?nki?1??Aixi,
mk其中m,n?R,mn?0,则?Aixi?1④.
i?1n由于推广8是推广9的特例,故下面证明推广9.
kkm?niiikmkn证明 令???A?Axi?1i?1??Aixi??Aixi
i?1i?1kkkm?nkmkk??i?1Ai?Ajxjj?1??Aixii?1?j?1Ajxj?kn??i?1j?1nAiAjxj?xjn?m?xim?.由下标的对称性,对
k换上式的下标,得????i?1j?1niAiAjxi?xmi?xjm?..将上面两式相加,得
kk2????i?1j?1AiAj?xi?xjmm??x?xjn?.?mn?0,由幂函数性质知xim?xjm与
xi?xj同号, AiAj?xim?xjm??xin?xjn??0,?2??0,
nnkk即??0,??Ai?Aixii?1i?1kkm?nk??Axii?1mik??Aixi,?i?1nk?Axii?1m?nik??Axii?1mi?0,
??Aixi?i?1n?Ai?1i?1,即不等式④成立.
222题13 设x1,x2,x3,y1,y2,y3是实数,且满足x1?x2?x3?1,证明不等式
(x1y1?x2y2?x3y3?1)?(x1?x2?x3?1)(y1?y2?y3?1).
2222222 (第十届高二第二试第22题)
22证法1 当x12?x2?x3?1时,原不等式显然成立.
22222当x12?x2?x3?1时,可设f?t???x12?x2?x3?1?t?2?x1y1?x2y2?x3y3?1?t
222??y1?y2?y3?1?.易知右边??x1t?y1???x2t?y2???x3t?y3???t?1?.
2222?f?1???x1?y1???x2?y2???x3?y3??0.?f?t?是开口向下的抛物线,
222??t?4?x1y1?x2y2?x3y1??3222?4?22x1?x2???x13?222222 y1?y2??1y3即?022?(x1y1?x2y2?x3y3?1)?(x1?x2?x3?1)(y1?y2?y3?1).
22?x3?1时, 综上,x12?x22(x1y1?x2y2?x3y3?1)?(x1?x2?x3?1)(y1?y2?y3?1).
?222222证法2,?xi,yi?R?i?1,2,3?,x1?x2?x3?1,?当y1?y2?y3?1时,
2222222(x1?x2?x3?1)(y1?y2?y3?1)?0,又(x1y1?x2y2?x3y3?1)?0,?求证的不
222222222等式成立.当y1?y2?y3?1时,(x1?x2?x3?1)(y1?y2?y3?1)?
2222222?1?x21?x2?x31?y1?y2?y322??222?22222?1?x12?x2?x3?1?y1?y2?y3????2??2????2???x12?y12??x22?y22??x32?y32??2?1??????1?x1y1?x2y2?x3y3????????222????????(x1y1?x2y2?x3y3?1).综上,在题设条件下,总有
(x1y1?x2y2?x3y3?1)?(x1?x2?x3?1)(y1?y2?y3?1).
222222c?y1?y2?y3?1,b??2(x1y1?x2y2?x3y3?1),证法3 设a?x1?x2?x3?1,
22222222则由
22x1?x2?x3?12222知a?02,从而
a?b?c?x1?x2?x3?1?2?x1y1?x2y2?x3y3?1??y1
?y2?y3?1??x1?y1???x2?y2???x3?y3??0.
22222?b22?4ac??2a?b???4a?4ab?4ac??4a?a?b?c??022?,
,
即
b?4ac??2a?b??0222,
22?b?4ac?02222(x1y1?x2y2?x3y3?1)?(x1?x2?x3?1)(y1?y2?y3?1).
??证法4 设a??x1,x2,x3?,b??y1,y2,y3?,则
??a?b??x1,x2,x3??y1,y2,y3??x1y1?x2y2?x3y3,又
????a?b?a?b?cos??x1?x2?x3?22222y1?y2?y3?cos?.
2222?x1y1?x2y2?x3y3?1?1?x1?x2?x3?2y1?y2?y3?cos??2221?x1?x2?x3?222y1?y2?y3?cos??1?222x1?x2?x3?y1?y2?y3)2222222y1?y2?y3?0
222?(x1y1?x2y2?x3y3?1)?(1?222222x1?x2?x3222
?(x1?x2?x3?1)(y1?y2?y3?1).
证法5 记A??x1,x2,x3?,B??y1,y2,y3?,O?0,0,0?为坐标原点,则由
AB?OA?OB,
得
?x1?y1???x2?y2???x3?y3??222x1?x2?x3?2222222y1?y2?y3,整理得
2221??x1y1?x2y2?x3y3??1?x1?x2?x3?2222y1?y2?y3?0,
2?xy1?x2y2?x3y3?1?1??(x1y1?x2y2?x3y3?1)?1?2x1?x2?x3x?x?x212223y1?y2?y3?0,
2223222?y?y?y21?2?(x1?x2?x3?1)(y1?y2?y3?1)222222.
评析 这是一个条件不等式的证明问题.由求证式是b?ac的形式自然联想到二次函数的判别式,构造一个什么样的二次函数是关键.当然是构造
f?t??x1?x2?x3?1t?2?x1y1?x2y2?x3y3?1?t?y1?y2?y3?1,但只有当
22222222????x1?x2?x3?1?0时,f?t?才是二次函数,故证法1又分x1?x2?x3?1?0与
222222x1?x2?x3?1?0两类情形分别证明.很显然,等价转化思想、分类讨论思想是证法1的
222精髓.
证法2直接运用基本不等式证明.证法3通过换元后证明b?4ac?0(即求证式),技巧性
2很强,一般不易想到,读者可细心体会其思路是如何形成的.证法4由求证式中的
x1?x2?x3,y1?y2?y3及x1y1?x2y2?x3y3联想到空间向量的模及数量积,因而构
222222造向量解决问题.证法5则从几何角度出发,利用AB?OA?OB使问题轻松得证.五种证法,从多角度展示了本压轴题的丰富内涵.
拓展 本题可作如下推广:
n推广 1 若xi,yi?R?i?1,2,?,n?,?xi2?1,则
i?1?n??n2??n2???xiyi?1????xi?1???yi?1?. ?i?1??i?1??i?1?2推广 2 若xi,yi?R?i?1,2,?,n?,m?0,?xi2?m,则
i?1n?n??n2??n2???xiyi?m????xi?m???yi?m?. ?i?1??i?1??i?1?2两个推广的证明留给读者. 题14 已知x、y、z?0,并且
x221?x?y221?y?z221?z?2,
求证:
x221?x?y221?y?z221?z?2.
(第一届备选题)
证法1 令x?tan?,y?tan?,z?tan?,且?,?,?为锐角,则题设可化为
sin??sin??22si?n?22,2即cos??22co?s?22c?o?.s由柯1西不等式知
2?2?1?sin??sin??sin??2??cos222??cos??cos??
??sin?cos??sin?cos??sin?cos?12?2?1????sin2??sin2??sin2???. ?2?2??sin2???sin2??sin2???2.由万能公式得
tan?1?tan?2tan?1?tan?2?tan?1?tan?2?2,即
x1?x2?y1?y2?z1?z2?2.
证法2 构造二次函数
?f?t????11?x2t???x???2?1?x??211?y2t???y???21?y???211?z2t???21?z?z2?111????2221?y1?z?1?x?2?xyzt?2????2221?y1?z??1?x?222?yz?t ??x. ???222??1?x1?y1?z??0,即?f?t??0,当且仅当x?y?,z取t?x?y?z时取等号,???222??x?1yz?11??xyz4????4??????0,?2???222222221?x1?y1?z1?x1?y1?z1?x1?y1?z??????2?11?xx222?1?x221?x22,11?yz222?1?y221?y1,11?z11?y22?1?z221?z,
又
1?x?y1?y?1?z?2,?21?x2??11?z2?1,
?xyz??4????4?1?2?0, 222?1?y1?z??1?x故
x1?x2?y1?y2?z1?z2?2.(当且仅当x?y?z?2时取等号)
证法3
x221?x?y221?y?z221?z?2,
即?1???1??1?111???1??1??2,即???1,于是??2?2?2?2221?x??1?y??1?z?1?x1?y1?z1x?21?x?zy, 2?2?1?y?1z2222?111??xyz?????2?2???2??2?221?y?1z?1?x???1x?1y?1?z??即
x1?x2?y1?y2?z1?z222?2. 证法4 令
x1?xY?X,y221?yZ?Y,z221?z?Z,则X?Y?Z?2,且
22?x?XYyz?Z?222x?,y?,z??????,所以??? 222?1?X1?Y1?Z1?y1?z?yz??1?x?xX?X?3?2?x2?22?X2YZ?YZ?2?2??3???XYZyz???1?X1?Y1?Z22??X?Y?Z???X??3?????2?Y?Z22 ???1??3?2??X?Y?Z3??2xyz1??2?所以????32??2?2.??222?31?x1?y1?z???2ay222.
证法5 设
2ax221?x2?a?b?c1?y2b,z?22,?2c2ba?b?c1?z,
,z22?2ca?b?c,
则x2?b?c?a,y?2a?c?ba?b?c1y1z1左边= ?????2221?xx1?yy1?zz?b?c?ac?a?ba?b?c2a??2b??2c??a?b?c?2a2b2c?1????x2??????a?b?c2a?b?c6a?b?c6a?b?c2a?b?c?a??b?a?c?b??c?b?a?c??
?3?a?b?c?a??b?a?c?b??c?b?a?c??2?ab?bc?ca???a?b?c222?2.?23?a?b?c?x222?13?a?b?c?2x222?证法6 ?1?x?21?x2?2?1?xz2?2x?22?; 21?x同理?y221?y?2z?22?;??22?. 222221?y1?y1?z1?z1?z222y三式相加得
x1?x?y221?y??111??2?? ?2222?1?z1?y1?z??1?xz??xyz,2?2?1?22??即??2221?y1?z??1?x??. ?2?xyz?22???2221?y1?z?1?x故
x1?x2?y1?y2?z1?z2?2.
?xyz? 证法7 ? ??222?1?y1?z??1?x?????11?x22?x1?x2?11?y2?y1?y2??1z??22?1?z1?z?
2?111????2221?y1?z?1?x222???xyz??.??222?1?y1?z???1?x由已知,易知
11?x2?11?y2?11?z2?1,x221?x?y221?y?z221?z?2,
?xyz?xyz?????2,????222?2221?y1?z?1?x1?y1?z?1?x22.
证法8 由已知,易知
11?x2?11?y2?11?z2?1.
设
11?x2?aa?b?c1?yc?abz1?z,12?ba?b?c1?za?bc,12?ca?b?c,
则x?b?cax,y?,z?.
所以
1?x2?y1?y2?2?a?b?c?b?c?a?a?b?cc?a?b
??a?b?c??b?c?c?a?a?b?a?b?c22222?2.
证法9 由
x1?x?y1?y?z1?zx2?2,易得
11?x22?11?y2?11?z2?1,于是
2?x221?x?y221?y?z221?z?y????z??2???2?2??1?x??1?y??1?z? ???1111?x22221?y21?z2?xyz???2?222?1?x1?y1?z??xyzxyz???????.????222?2221111?y1?z?1?x1?y1?z?1?x??2221?x1?y1?z2.
证法10 由
x221?x?y221?y1?z221?z?2,易得
11?x2?11?y2?11?z2?1.
2?x11???2x????, 22221?x1?x1?x222?1?x?22x12同理,
2y1?y2?12?12?1?y2?,2z1?z2?12?12?1?z2?,
??xyz?31?111?312??????????2.?222?222?1?x1?y1?z221?x1?y1?z????22
?x1?x2?y1?y2?z1?z2?2.
证法11 由已知,易得
11?x2?11?y2?11?z22?1.构造空间向量
??a???????,,, b??222??1?x1?y1?z???1112?,,?, 2221?x1?y1?z??xy2z2?????????a?b?a?b?cos??ab,?a?b????????????????a2?2?xyz? b.????222?1?x1?y1?z??1?z?21?z??22211?x2x221?x2?11?y2y221?y?1?z22
????2??1?x???1????2??1?y???12?2?1?z??1?? ?????????????x???2?1?x???22??y???2?1?y???22?z?21?z??22?? ?? ?1?2?2, ?x1?x2?y1?y2?z1?z2?2.
评析 条件不等式证明的关键在于如何利用条件,而当条件难以直接利用或条件式显得相当复杂时,通常应当将条件适当转化,证法1、4、5、8正是通过不同形式的换元,使得问题变得简单易证的.灵活(变形)应用基本不等式(证法6、证法10),柯西不等式(证法3、7),以及一些重要的结论(证法9)也是证明不等式的常用方法.证法2、11分别构造函数、向量加以证明,很富创新性,同时也应纳入我们正常思考的范围.
拓展 本赛题可推广为:
n命题1 若x1,x2,…,xn?0,且?i?1xi221?xi?n?1?n?3?,
n则?i?1xi1?xi2?n?1.
证明 设xi?tan?i,i?1,2,…,n,0??i?n?22,则有
n2?1?xi?1xi22in??1?tani?1tan?i22n?i??n?1,??sin?i?n?1,?cos?i?1.i?1i?1
n??i?1xi1?xi2n??1?tani?1ntan?i2n?i?sin?i?1icos?i.
由柯西不等式得?sin?icos?i?i?1?n??n?22sin?cos? ??i??i???i?1??i?1?n??n?1??1?n?1.??i?1xi1?xi2?n?1.
n命题2 若x1,x2,…,xn?0,且?i?1xi221?xi?k?k为常数,n?3,0 n则?i?1xi1?xi2?k?n?k?. n命题3 若x1,x2,…,xn?0,且?i?1nxi2m2m1?xi?k?k?n,m?R?, 则?i?1xim2m1?xi?k?n?k?. 命题2、3的证明与命题1相仿. n 命题4 设x1,x2,…,xn?0,且?i?1xi22s?xi?k(s,k为正常数,n?3, n0?k?n),则?i?1xis?xi2?k?n?k?sxi2. n证明 将题设化为 ?i?11?xi2st?作变换?k,i2xiss2?i?1,2…,,n?,则题设化为 xin?1?ti?1ti22in?k.由命题2得 ?1?ti?1ntin2i?k?n?k?,即 ?i?11?s?2xisk?n?k?,化简得 ns?i?1xis?xi2?k?n?k?,??i?1xis?xi2?k?n?k?s. 进一步发散思维,还可得到: n命题5 设x1,x2,…,xn?0,且?i?1xi221?xi?k?k为常数,n?3,0?k?n?, n则?xi2?i?1knn?k. 证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为 nn2?sini?1?i?k,由此得?cos?i?n?k. i?12n2n2由柯西不等式得?cos?i??i?1i?1?n1???2cos?i?i?12???122?cos?i????n, 2cos?i???n2n即?sec?i?i?1n2n2nn?k,n??i?1tan?i?n2n?k,??tan?i?i?1n2n?k?n?knn?k, 即?xi2?i?1knn?k. 仿命题4的证法可将命题5推广为: n命题6 设x1,x2,…,xn?0,且?i?1xi22s?xi?k(s,k为正常数,n?3, n0?k?n),则?xi2?i?1sknn?k. 对本赛题的条件再联想,又可推出 n命题7 设x1,x2,…,xn?0,且?i?1xi22n1?xi?n?1?n?3?,则?xi??n?1?2. i?1n证明 设xi?tan?i,且?i为锐角?i?1,2,…,n?.则题设可化为 nn2?sini?1?i?n?1,由此得?cos?i?1. i?12?n?1cos?1?cos?2?…?cos?n?1?22222cos?1?cos?2?…?cos?n?1n?1222 ?1?cos?nn?1?sin?nn?12,即 …?cos?n?1?sin?n,同理可得 ?n?1?n?1cos?1?cos?2?222?n?1?n?1cos2?1?cos2?2?…?cos2?n?2?cos2?n? ?sin?n?1, 2?n?1?n?1cos2?2?cos2?3?…?cos2?n以上n个式子相乘,得 ?sin?1. 2?n?1?nn?cos??cos?2???cos?n???sin?1?sin?2?…?sin?n?, 1222?有?tan?n??n?1?2,即?xi??n?1?2. i?1i?1nnn 仿命题4的证法又可将命题7推广为: n 命题8 设x1,x2,…,xn?0,且?i?1xi22s?xi?n?1?s为常数,n?3?, nn2则?xi???s?n?1???. i?1 命题8又可推广为: n 命题9 设x1,x2,…,xn?0,且?i?1xikk1?xi?n?1?n?3,k?N且2?k?n?, n则?xi??n?1?. ki?1nn 证明 题设可化为 ?1?xi?11ki?1.作变换ai?11?xi, kn,则题设化为 ?ai?1i?1,且 xi?k1ai?1?1?aiai, ?x1?k1?a1a1?a2?a3?…?ana1111??n?1?n?1a2a3…an?k?a2?a3?…?an?k??n?1?n?1a2a3…an?kx1???,即有x1???,同???aaa?????1?11???? 11??n?1?n?1a1a3…an理可得x2??a2??n?k??n?1?n?1a1a2…an?1?,…, xn??an????n?k? . ??以上n个式子相乘,得?xi??n?1?. ki?1仿命题4的证法,命题9可进一步推广为: n命题10 设x1,x2,…,xn?0,且?i?1xikks?xin?n?1 ?s为正常数,k?N且2?k?n?,则?i?1nkxi???s?n?1???. 题15 求所有的正实数a,使得对任意实数x都有acos2x?a2sin2x?2 (第十一届高二第二试第23题) 解法1 原不等式即a21?2sin2x?a2sin2x?2 ①.设a22sin2x?t,则化为at?1?t?2?0, is其中t?a2sinx?[1,a2](当a?1),t?a2nx2?[a,1](当0?a?1).①式即 t?2t?a?0.设f(t)?t?2t?a,由于f(t)在1与a之间恒小于或等于零,所以?a?1?422f(1)?0且f(a)?0,即?a?2a?a?0,解之,得 ?a?0?2225?12?a?1为所求. 解法2 ∵a?0,∴acos2x2sin2cos2x?a2sinx2?a1?2sinx2?a2sinx2?aa2sinx2?a2sinx2?2a,又 a?ax?2,∴a?1.设t?a2sinat2x2记f(t)?(a?t?1), at?t.依题意,2?f(t)恒成立,∴2?f(t)max.f(t)?增.而f(a)?1a2?t在区间[a,2a]上单调递减;在区间[a,1]上单调递 1a?a2?f(1)?a?1,∴f(t)max?1a?a(当t?a时取最大值),故 22?a2?2,解得 5?12?a?1为所求. 1?2sin2解法3 原不等式即ax?a2sin2x?2.令t?a2sin2x,则 at?t?2①. (1)若a?1,则t?1,①式显然成立. 02sin(2)若a?1,则a?a2x?a,即1?t?a,即①式对任意t?[1,a]恒成立 222(0?a?1) y y?t?ay y?t?att(a?1) 2a 2a OO 1 a a2 图1 x OO a a 1 2图2 a?a,可得1?2 a1?2,且a?2由函数y?这与a?1矛盾. at?t的图象(图1)及1?aa2?2,但 22sni(3)若0?a?1,则a?a2x?a,即a2?t?1.由函数y?a10at?t的图象(图2) 及a?2a?1,可得a?5?122aa2?2且1?2?2,即(a?1)(a?a?1)?0且a?1,又 0?a?1,解得?a?1. 综合(1)、(2)、(3),可得 5?12?a?1为所求. 评析 解决本题的关键是如何由acos2x?a2sin2x?2对任意实数x恒成立,得到关于a1?2sin22的不等式.由于cos2x?1?2sinx,故原不等式即ax?a2sin2x?2,亦即 aa2sinx2?a2sinx2?2.令t?a2sin2x,则原不等式就是 at?t?2.至此,若去分母,便将原问 at题转化为二次不等式恒成立的问题;若不去分母,应当有2?(f(t)?at?t的最大值解决问题. 2?t)max,可通过函数 解法1运用函数思想,把二次不等式t?2t?a?0恒成立问题转化成二次函数 f(t)?t?2t?a的图象恒不在x轴上方的问题,从而得到关于a的不等式组,求出了a的 2范围.解法2则由a再由函数f(t)?atcos2x?a2sin2x?2a及acos2x?a2sin2x?2,得a?1从而得a2?t?1. ?t在[a,2a]上单调减,在[a,1]上单调增,求出了f(t)的最大值 1a?a,由f(t)?2恒成立,得 at21a?a2?2,求出了a的范围.解法3则直接根据函数 f(t)??t的图象,分a?1,a?1,0?a?1三种情形讨论,直观地求出了a的范围. 三种解法,道出了解决恒成立问题中求参数的三种方法:解法1为函数法;解法2为最值法;解法3为图象法.当然,解决恒成立问题决不仅仅是这三种方法,比如,还有分离参数法,变更主元法,运用补集思想等. 题( ) A、-1 B、1 C、-2 D、2 (第七届高一培训题第2题) 解法1 f?x??1??1????x?1????.因为两个互为倒数的数,在它们等于?1时,其和?2??x?1??16 函数 f?x??x?2x?22x?22?x?1?的最小值为 可以取到绝对值的最小值.即当x?1??1,即x?2或x?0时,f?x?的绝对值最小.又 x?1,故x?2时,f?x?的绝对值最小.又f?x??0,?f?x?min?f?2??1.选B. 解法2 因为x?1,联想到sec??1,于是令x?sec2?,???0,?????,则 2?x?1?tan?. f?x??x?2x?22?x?1?222??x?1?2?12?x?1?12?tan??12tan?2?1?1?11?1?tan?????2tan??2?tan??2tan?,当且仅当tan??tan?2,即x?2时,f?x?min?1.故选B. 解法3 设??x??x?2x?2?x?1?,g?x??2x?2?x?1?. ???x??g?x??x?2x?2??2x?2??x?4x?4??x?2??0,???x??g?x??0. 222???x?g?x??1,即f?x??1,?f?x?min?1.故选B. 解法4 f?x??x?2x?22x?22??x?1?2?1?x2?x?1??2?1?.由此联想到万能公式: 2tansin??1?tan?221?tan?0,则f2?2?1sin??0, ?2,故令x?1?tan?x??g????2tan?2?sin??0.又?1?sin??1,0?sin??1,B. 1sin??1,即f?x??1.?f?x?min?1.故选 解f?x??法5 x?12?12?x?1??x?1, ?12?x?1??x?1?0,12?x?1??x?1?2?1?2?x?1??2x?12?1当且仅当 x?12?, 即x?2时取等号.?f?x?min?1.故选B. 解法6 ?x?1,?f?x??x?2时取等号.故选B. x?2x?22x?22??x?2?2?2x?22x?2??x?2?22x?2?1?1,当 解法7 由y?2x?2x?22x?22去分母并整理,得x2??2?2y?x?2?2y?0.?x?R, 2????2?2y??4?2?2y??0,即y?1?0,?y??1或y?1.?x?1, ?y?f?x???x?1?2?12?x?1??0,?y?1.当y?1时,由1?x?2x?22x?22,解得 x?2??1,???,?f?x?min?1.故选B. 评析 解法1、6、7都是运用高一知识解决问题的,其余解法都用到了不等式知识,以解法5、6最简捷. 解法7运用的是判别式法.运用此法是有前提的,如果将题中限制条件“x?1”去掉,此法总能解决问题.但有了“x?1”的限制,此法就不一定能奏效.只有当y?1时求出的x的值在x?1的范围内时,1才是最小值,否则1就不是最小值,应当另寻他法加以解决.事实上,若将此题改为“求函数f?x??x?2x?22x?22?x?3?的最小值,”此法就失灵了.因为 y?1时, x?2??3,???.故y取不到1,也就谈不上ymin?1了. x?2x?22x?22若用不等式知识解:y??x?1?0, ??x?1??1?2?x?1?2x?12?12?x?1?,?x?3, ?y?2x?12?12?x?1?当且仅当?1, x?12?12?x?1?,即x?2时取等号,但2??3,???, 故y取不到1,同样不能解决问题.此时我们可利用函数单调性解: 设3?x1?x2,则 f?x1??f?x2??x1?2x1?22x1?22?x2?2x2?22x2?22??x21?2x1?2?x2?1??x2?2x2?2?x1?1?2???2?x1?1??x2?1?x1x2?x1?x2x1?x22?x1?1??x2?1?2222??x1x2?x1?x2???x1?x2??x1?x2?2?x1?1??x2?1???x1?x2??x1x2??x1?x2??2?x1?1??x2?1?.?3?x1?x2,?x1?x2?0,x1x2??x1?x2??0,?x1?1?0,x2?1?0, ?f?x1??f?x2??0,f?x1??f?x2?,已知函数是?3,???的单调增函数. ?ymin?f?3??3?2?3?22?3?22?54. kx拓展 本题的函数模型实际就是f?x??x?(0,?x?0,k?0?,容易证明,该函数在 k]上单调递减,在[k,??)上单调递增.于是关于其最值,我们有下面的 定理 已知函数f?x??x?⑴当x?m0?m?⑵当0?x?n?⑶当x?p?kx?x?0,k?0?,则 ?k时,f?x?有最小值2k; ?k时,f?x?有最小值f?n?; k时,f?x?有最小值f?p?; ⑷当q?x?rq??k?r时,f?x?有最小值2k,且有最大值max??f?q?,f?r??. 例如,函数f?x??x?f?1??1?414x在?1,???上有最小值24?4;在?0,1?上有最小值 43?133?5;在?3,???上有最小值f?3??3?;在?1,3?上有最小值24?4, 最大值max?f?1?,f?3???max?5,??13???5. 3?题17 已知x,y,z?R?,且 1x?2y?3z1?,则x?y2?z3的最小值是 ( ) A、5 B、6 C、8 D、9 ?n??证明 由均值定理,得?i?1???nm?pai?q??n???m?1mnni??pa?i?1?q??p?ai?nqi?1nn?pk?nqn,则 ?i?1mpai?q?nmpk?nqn?mn(当且仅当a1?a2?????an?(kp?nq), kn时取等 号). 推广1、2、3都是推广4的特殊情形,运用推广4,可以直接解决以下问题. 1、 己知x,y,z?R?,且x?y?z?3,求证:5x?1?2、 己知a,b,c?R?,a?b?c?1,求证:33a?7?3、 x,y,z?R?,且x?y?z?8,求423342335y?1?3 5z?1?36. 3b?7?3c?7?6. x??4y?34?423z?34的最大值. 变换角度思考,我们能否求3a?1?先从最简单的情况入手. ?3b?1?3c?1(a?b?c?1)的最小值呢? ?3a?1?3b?1?2?3(a?b)?2?2(3a?1)(3b?1)?1?23(a?b)?1?9ab?1 ?3(a?b).若ab?0,我们设法保留a?b,去掉ab,得上式右边 ?3(a?b)?1?23(a?b)?1?1??1??3(a?b)?1?. ?2故有3a?1?3b?1?3(a?b)?1?1.(*) 对于a,b,c?0,反复运用(*)式,有 3a?1??3b?1?3c?1?3(a?b)?1?1?3(a?b?c)?1?2 3a?1?3b?1?3c?1?3?1?1?2?4,且当 3c?1?3(a?b)?1?3c?1?13(a?b?c)?1?1?1?若有a?b?c?1,则 a?b?0,c?1时取等号,于是便有 命 3a?1?题1 3c?1?若a,b,c?0,a?b?c?1,则 3b?1?3?1?1?2?4. 将a?b?c?1改为a?b?c?k,则有 命题2 若a,b,c?0,a?b?c?k,则3a?1?3b?1?3c?1?3k?1?2. 将命题2中的3改为n,则有 命题3 若a,b,c?0,a?b?c?k,则na?1?继续推广,得 命题4 若a,b,c?0,a?b?c?1,n,m?N?,则 ?2m?m?n. na?m?nb?m?nc?m nb?1?nc?1?nk?1?2. 证明 ?ab?0,?(na?m)(nb?m)?n2ab?mn(a?b)?m2?mn(a?b)?m2, 即 (na?m)(nb?m)?mn(a?b)?m2,于是有 (na?m)?2(na?m)(nb?m)?(nb ?m)?m?2mn(a?b)?m2?[n(a?b)?m], 即 ?na?m?nb?m?2?(m? n(a?b)?m),?na?m?nb?m?2na?m?nb?m?m?m?n(a?b)?m. 反复利用上式,得 nc?m ?m?m? nc?m ? n(a?b)?m?n(a?b?c)?m?2m?n?m. 将a?b?c?1改为a?b?c?k,则有 命题5 若a,b,c?0,a?b?c?k,n,m?R?,则 na?m?nb?m?nc?m?2m?m?nk. 命题6 若a1,a2,???,ak?0,a1?a2?????ak?1,k,n,m?N?, 则 na1?m?na2?m?????nak?m?(k?1)m?m?n.(证略) 222题20 若0?a、b、c?1,并且a?b?c?2,则a?b?c的取值范围是 ( ) A、?,??? B、?,2? C、?,2? D、?,2? ?3??3??3??3?(第九届高二第一试第10题) 解法1 由柯西不等式,可知(a?b?c)(1?1?1)?(a?1?b?1?c?1). 222∵a?b?c?2,∴a?b?c??4??4??4??4?222222243. 又由0?a、b、c?1,可知 (1?a)(1?b)(1?c)?0, 即1?(a?b?c)?(ab?bc?ca)?abc?0,∴ab?bc?ca?1,于是 2222a?b?c?(a?b?c)?2(ab?bc?ca)?4?2(ab?bc?ca)?4?2?2. 综上, 43?a?b?c?2.故选C. 222解法2 由a?b?c?2,得c?2?(a?b),代入u?a2?b2?c2,有 u?a?b?[2?(a?b)]?2a?2b?4?2ab?4a?4b,即2a?(2b?4)a?(2b?4b?4?u)?0,∵a?(0,1), 2222222∴??(2b?4)2?8(2b2?4b?4?u) ?0,即2u?3b?4b?4?3(b?223)?283?f(b),∵b?(0,1),则上式成立的条件必须 且只须是f?4?2??u?2.故选C. ,∴?2u?f(0)?3?3?222评析 解法1由柯西不等式得到a?b?c?a?b?c?2.从而选C. 22243,并由a、b、c?(0,1)推得 解法2运用方程思想,设u?a2?b2?c2后,将其表示成关于a的二次方程,由2?8?a?(0,1),得⊿?0,进而得2u?3?b????f(b),此式成立的条件是什么?这是 3?3?2一个关键问题.,?b?(0,1),?必须且只须f?拓展 众所周知下面的定理 ?2???2u?f(0),从而解决问题. ?3?22 定理 若二次函数y?ax?bx?c?0,且a?0,则b?4ac?0. 易得下面的 222推论 若f(x)?(x?a1)?(x?a2)???(x?an),则 (a1?a2???an)?n(a1?a2???an). 222证明 f(x)?(x?a1)?(x?a2)???(x?an) 2222?nx?2(a1?a2???an)x?(a1?a2???an).由上面的定理,得 2222⊿?[2(a1?a2???an)]?4n(a1?a2???an)?0, 2222∴(a1?a2???an)2?n(a12?a22???an2). 由此,本题还可解答如下: 构造二次函数f(x)?(x?a)2?(x?b)2?(x?c)2,由推论,得 (a?b?c)?3(a?b?c),即2?3(a?b?c),∴a?b?c?a?b?c?43222222222222243,当且仅当 13时取等号.又a、b、c?(0,1),∴a2?b2?c2?a?b?c?2.故 2?a?b?c?2.∴选C. 下面再举一例说明推广的应用. 例 设x,y为正数,且x?y?1,证明?1???1??1?1???9 . ??x??y?(加拿大第三届数学竞赛题) 证明 ∵x?y?1,∴x2?y2?1?2xy. 构造二次函数f(t)?(t?x)2?(t?y)2,由推论得(x?y)2?2(x2?y2), ∴12?2(1?2xy),得xy?14,∴?1???1??1?xy?x?y?121???1??1?8?9,???x??y?xyxy即?1???1??1?1???9. ??x??y?222关于此题中a?b?c的最小值,还可以通过轮换对称的性质求得. 如果一个代数式里的字母按照某个次序轮换,所得的代数式与原式恒等.我们就把这个代数式叫做关于这些字母的轮换对称式.如a?b?c,abc,a?1?1a?1b?1cb?1?c?1, 等都是关于a、b、c的轮换对称式. 如果已知条件式和待求式都是关于某些字母的轮换对称式,则当且仅当这些字母相等时,待求式取得最值.再取一些特殊值(要满足条件式,但各字母取值不全相同)验证,便可确定待求式是最大值还是最小值.据此,本题中a?b?c的最小值还可这样求得:当且仅当 a?b?c?22222223222时,a?b?c取得最值3a?243,再令a?b?34,c?12,求得 a?b?c?118?43.故(a?b?c)min?22243. 本题中a?b?c的最小值还可由均值不等式求得:∵ 22222a?b?c3222?a?b?c? ???, 3??224?a?b?c??2?∴a2?b2?c2?3?,当且仅当时取等号. a?b?c??3?????3333????∴(a2?b2?c2)min? 43. 百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库历届“希望杯”全国数学邀请赛高二数学精选题详析(二)在线全文阅读。
相关推荐: