2024年全国数学中考试题分类汇编第一期专题26-图形的相似与位似

来源:网络收集 时间:2025-04-26 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

图形的相似与位似 一、选择题

1.(2016·湖北十堰)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为( )

A.1:3 B.1:4 C.1:5 D.1:9 【考点】位似变换.

【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.

【解答】解:∵OB=3OB′, ∴

∵以点O为位似中心,将△ABC缩小后得到△A′B′C′, ∴△A′B′C′∽△ABC, ∴

=.

∴故选D

=,

【点评】此题是位似变换,主要考查了位似比等于相似比,相似三角形的面积比等于相似比的平方,解本题的关键是掌握位似的性质.

2. (2016·湖北咸宁)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:

DE1 ①BC=2; ②

S△DOE1S△ODE1ADOES△COB=2; ③AB=OB; ④S△ADE=3.

其中正确的个数有( )

A. 1个 B. 2个 C.3个 D. 4个

(第2题)

【考点】三角形中位线定理,相似三角形的判定和性质.

【分析】①DE是△ABC的中位线,根据三角形的中位线等于第三边长度的一半可判断;②利用相似三角形面积的比等于相似比的平方可判定;③利用相似三角形的性质可判断;④利用相似三角面积的比等于相似比的平方可判定. 【解答】解:①∵DE是△ABC的中位线,

∴DE=2BC,即BC=2; 故①正确;

②∵DE是△ABC的中位线, ∴DE∥BC

∴△DOE∽△COB

1DE1S△DOE∴

S△COB

=(BC)=(2)=4,

DE2

12

1故②错误; ③∵DE∥BC

∴△ADE∽△ABC ∴AB=BC △DOE∽△COB ∴OB=BC ∴AB=OB,

故③正确;

④∵△ABC的中线BE与CD交于点O。 ∴点O是△ABC的重心,

根据重心性质,BO=2OE,△ABC的高=3△BOC的高, 且△ABC与△BOC同底(BC) ∴S△ABC =3S△BOC, 由②和③知,

S△ODE=4S△COB,S△ADE=4S△BOC,

11ADDEDEOEADOES△ODE1∴

S△ADE=3.

故④正确.

综上,①③④正确. 故选C.

【点评】本题考查了三角形中位线定理,相似三角形的判定和性质.要熟知:三角形的中位

线平行于第三边并且等于第三边长度的一半;相似三角形面积的比等于相似比的平方. 3. (2016·新疆)如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是( )

A.DE=BC B. =

C.△ADE∽△ABC D.S△ADE:S△ABC=1:2

【考点】相似三角形的判定与性质;三角形中位线定理.

【分析】根据中位线的性质定理得到DE∥BC,DE=BC,再根据平行线分线段成比例定理和相似三角形的性质即可判定.

【解答】解:∵D、E分别是AB、AC的中点, ∴DE∥BC,DE=BC, ∴∴

∴A,B,C正确,D错误; 故选:D.

【点评】该题主要考查了平行线分线段成比例定理和相似三角形的性质即可判定;解题的关键是正确找出对应线段,准确列出比例式求解、计算、判断或证明.

4. (2016·云南)如图,D是△ABC的边BC上一点,AB=4,AD=2,∠DAC=∠B.如果△ABD的面积为15,那么△ACD的面积为( )

=

,△ADE∽△ABC,

A.15 B.10 C. D.5

【考点】相似三角形的判定与性质.

【分析】首先证明△ACD∽△BCA,由相似三角形的性质可得:△ACD的面积:△ABC的面积为1:4,因为△ABD的面积为9,进而求出△ACD的面积. 【解答】解:∵∠DAC=∠B,∠C=∠C, ∴△ACD∽△BCA, ∵AB=4,AD=2,

∴△ACD的面积:△ABC的面积为1:4, ∴△ACD的面积:△ABD的面积=1:3, ∵△ABD的面积为15,

∴△ACD的面积∴△ACD的面积=5. 故选D.

【点评】本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.

5. (2016·云南)在四边形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,点H为垂足.设AB=x,AD=y,则y关于x的函数关系用图象大致可以表示为( )

A. B. C. D.

【考点】相似三角形的判定与性质;函数的图象;线段垂直平分线的性质. 【分析】由△DAH∽△CAB,得问题.

【解答】解:∵DH垂直平分AC, ∴DA=DC,AH=HC=2, ∴∠DAC=∠DCH, ∵CD∥AB, ∴∠DCA=∠BAC,

∴∠DAN=∠BAC,∵∠DHA=∠B=90°,

=,求出y与x关系,再确定x的取值范围即可解决

∴△DAH∽△CAB, ∴

=

∴=, ∴y=, ∵AB<AC, ∴x<4, ∴图象是D. 故选D.

【点评】本题科学相似三角形的判定和性质、相等垂直平分线性质、反比例函数等知识,解题的关键是正确寻找相似三角形,构建函数关系,注意自变量的取值范围的确定,属于中考常考题型.

6. (2016·四川达州·3分)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为( )

A.2 B.3 C.4 D.5

【考点】相似三角形的判定与性质;平行线的判定;直角三角形斜边上的中线. 【分析】根据直角三角形斜边上中线是斜边的一半可得DF=AB=AD=BD=5且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=8,由EF=DE﹣DF可得答案.

【解答】解:∵AF⊥BF, ∴∠AFB=90°,

∵AB=10,D为AB中点, ∴DF=AB=AD=BD=5, ∴∠ABF=∠BFD, 又∵BF平分∠ABC,

∴∠ABF=∠CBF, ∴∠CBF=∠DFB, ∴DE∥BC,

∴△ADE∽△ABC, ∴

=

,即

解得:DE=8, ∴EF=DE﹣DF=3, 故选:B.

(2016·山东烟台)如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点7.

O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为( )

A.(3,2) B.(3,1) C.(2,2) D.(4,2)

【考点】位似变换;坐标与图形性质;正方形的性质.

【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.

【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为, ∴

=,

∵BG=6, ∴AD=BC=2, ∵AD∥BG,

∴△OAD∽△OBG, ∴∴

=, =,

解得:OA=1, ∴OB=3,

∴C点坐标为:(3,2), 故选:A.

5-1(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴2藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:

8.(2016·山西)宽与长的比是

作正方形ABCD,分别取AD,BC的中点E,F,连接EF;以点F为圆心,以FD为半径画

弧,交BC的延长线与点G;作GH?AD,交AD的延长线于点H.则图中下列矩形是黄金矩形的是( D )

A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH

考点:黄金分割的识别

分析:由作图方法可知DF=5CF,所以CG=(5?1)CF,且GH=CD=2CF 从而得出黄金矩形

解答:CG=(5?1)CF,GH=2CF CG(5?1)CF5?1?? GH2CF2 ∴矩形DCGH是黄金矩形

选D.

(2016·四川巴中)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的9.

面积与四边形BCED的面积的比为( )

A.1:2 B.1:3 C.1:4 D.1:1 【考点】相似三角形的判定与性质.

【分析】证明DE是△ABC的中位线,由三角形中位线定理得出DE∥BC,DE=BC,证出△ADE∽△ABC,由相似三角形的性质得出△ADE的面积:△ABC的面积=1:4,即可得出结果.

【解答】解:∵D、E分别为△ABC的边AB、AC上的中点, ∴DE是△ABC的中位线, ∴DE∥BC,DE=BC, ∴△ADE∽△ABC,

∴△ADE的面积:△ABC的面积=()2=1:4, ∴△ADE的面积:四边形BCED的面积=1:3;

故选:B. 10.(2016.山东省泰安市,3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是( )

A. B.

C.

D.

来源%:@中国教~#育出版网

【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案. 【解答】解:∵△ABC是正三角形, ∴∠B=∠C=60°, ∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°, ∴∠BPD=∠CAP, ∴△BPD∽△CAP, ∴BP:AC=BD:PC, ∵正△ABC的边长为4,BP=x,BD=y, ∴x:4=y:(4﹣x),

中^#国教%育出&@版网[w%w*w.zz^s&tep.c~om]∴y=﹣x+x. 故选C.

【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键. 11.(2016.山东省威海市,3分)如图,在△ABC中,∠B=∠C=36°,AB的垂直平分线交BC于点D,交AB于点H,AC的垂直平分线交BC于点E,交AC于点G,连接AD,AE,则下列结论错误的是( )

2

A. = B.AD,AE将∠BAC三等分

C.△ABE≌△ACD D.S△ADH=S△CEG

【考点】黄金分割;全等三角形的判定;线段垂直平分线的性质.

∠BAC=108°,【分析】由题意知AB=AC、根据中垂线性质得∠B=∠DAB=∠C=∠CAE=36°,从而知△BDA∽△BAC,得分割定义知

=

=

=

,由∠ADC=∠DAC=72°得CD=CA=BA,进而根据黄金

,可判断A;根据∠DAB=∠CAE=36°知∠DAE=36°可判断B;

根据∠BAD+∠DAE=∠CAE+∠DAE=72°可得∠BAE=∠CAD,可证△BAE≌△CAD,即可

判断C;由△BAE≌△CAD知S△BAD=S△CAE,根据DH垂直平分AB,EG垂直平分AC可得S△ADH=S△CEG,可判断D. 【解答】解:∵∠B=∠C=36°, ∴AB=AC,∠BAC=108°,

∵DH垂直平分AB,EG垂直平分AC, ∴DB=DA,EA=EC,

∴∠B=∠DAB=∠C=∠CAE=36°, ∴△BDA∽△BAC, ∴

=

又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°, ∴∠ADC=∠DAC, ∴CD=CA=BA,

∴BD=BC﹣CD=BC﹣AB, 则

=

,即

=

=

,故A错误;

∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°, ∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°, 即∠DAB=∠DAE=∠CAE=36°,

∴AD,AE将∠BAC三等分,故B正确;

∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°, ∴∠BAE=∠CAD, 在△BAE和△CAD中, ∵

∴△BAE≌△CAD,故C正确;

由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE, ∴S△BAD=S△CAE,

又∵DH垂直平分AB,EG垂直平分AC, ∴S△ADH=S△ABD,S△CEG=S△CAE,

∴S△ADH=S△CEG,故D正确. 故选:A.

12.(2016安徽,8,4分)﹣如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为( )

A.4 B.4 C.6 D.4

【考点】相似三角形的判定与性质.

【分析】根据AD是中线,得出CD=4,再根据AA证出△CBA∽△CAD,得出出AC即可.

【解答】解:∵BC=8, ∴CD=4,

在△CBA和△CAD中,

∵∠B=∠DAC,∠C=∠C, ∴△CBA∽△CAD, ∴

=

=

,求

∴AC2=CD?BC=4×8=32, ∴AC=4;

13.(2016兰州,3,4分).已知△ABC ∽△ DEF,若 △ABC与△DEF的相似比为3/4,则△ ABC与△DEF对应中线的比为()。 (A)3/4(B)4/3(C)9/16(D)16/9 【答案】A

【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为3/4,即对应中线的比为3/4,所以答案选 A。

【考点】相似三角形的性质

14.(2016兰州,6,4分)如图,在△ ABC中,DE∥BC,若AD/DB=2/3,则AE/EC=()。

(A)1/3(B)2/5(C)2/3(D)3/5

【答案】C 【解析】根据三角形一边的平行线行性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例, AE/EC=AD/DB=2/3,所以答案选 C。【来源:21cnj*y.co*m】 【考点】三角形一边的平行线性质定理

二、填空题

1. (2016·湖北黄冈)如图,已知△ABC, △DCE, △FEG, △HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一条直线上,且AB=2,BC=1. 连接AI,交FG于点Q,则QI=_____________. A D F H

Q

B C E G I

(第1题)

【考点】相似三角形的判定和性质、勾股定理、等腰三角形的性质. 【分析】过点A作AM⊥BC. 根据等腰三角形的性质,得到MC=

12BC=

12,从而

MI=MC+CE+EG+GI=7.再根据勾股定理,计算出AM和AI的值;根据等腰三角形的性质得出角2相等,从而证明AC∥GQ,则△IAC∽△IQG,故

QIAI=GI,可计算出QI=4. CI3A D F H

Q

B M C E G I 【解答】解:过点A作AM⊥BC.

根据等腰三角形的性质,得 MC=1BC=1. 22∴MI=MC+CE+EG+GI=7. 2在Rt△AMC中,AM=AC-MC= 2-(1)=15. 242

2

2

2

2

AI=

AM?MI22=

154?(7)=4.

2

2

易证AC∥GQ,则△IAC∽△IQG ∴即

QIAIQI4=GI CI=1 3∴QI=4. 3故答案为:4. 3

2. (2016·四川自贡)如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则

的值= 3 ,tan∠APD的值= 2 .

【考点】锐角三角函数的定义;相似三角形的判定与性质. 【专题】网格型.

【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边CP=1:3,CF=PF:BF=1:2,成比例,易得DP:即可得PF:在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.

【解答】解:∵四边形BCED是正方形, ∴DB∥AC, ∴△DBP∽△CAP, ∴

=

=3,

连接BE,

∵四边形BCED是正方形,

∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD, ∴BF=CF,

根据题意得:AC∥BD, ∴△ACP∽△BDP, ∴DP:CP=BD:AC=1:3, ∴DP:DF=1:2,

∴DP=PF=CF=BF, 在Rt△PBF中,tan∠BPF=∵∠APD=∠BPF, ∴tan∠APD=2, 故答案为:3,2.

=2,

【点评】此题考查了相似三角形的判定与性质与三角函数的定义.此题难度适中,解题的关键准确作出辅助线,注意转化思想与数形结合思想的应用

3. (2016·四川乐山·3分)如图6,在?ABC中,D、E分别是边AB、AC上的点,且DE∥BC,

若?ADE与?ABC的周长之比为2:3,AD?4,则DB?___▲__. 答案:2

解析:依题意,有△ADE∽△ABC,因为?ADE与?ABC的周长之比为2:3,B

ADEC图6AD2?,由AD=4,得:AB=6,所以,DB=6-4=2 所以,

AB3

4. (2016江苏淮安,18,3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 1.2 .

【考点】翻折变换(折叠问题).

【分析】如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小,利用△AFM∽△ABC,得到

=

求出FM即可解决问题.

【解答】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.

∵∠A=∠A,∠AMF=∠C=90°, ∴△AFM∽△ABC, ∴

=

∵CF=2,AC=6,BC=8, ∴AF=4,AB=∴

=

=10,

∴FM=3.2, ∵PF=CF=2, ∴PM=1.2

∴点P到边AB距离的最小值是1.2. 故答案为1.2.

【点评】本题考查翻折变换、最短问题、相似三角形的判定和性质、勾股定理.垂线段最短等知识,解题的关键是正确找到点P位置,属于中考常考题型.

5.(2016·广东梅州)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若S?DEC?3,则S?BCF?________.

答案:4

考点:平行四边形的性质,三角形的面积,三角形的相似的判定与性质。 解析:因为E为AD中点,AD∥BC,所以,△DFE∽△BFC, 所以,

EFDE1S?DEFEF11??,??,所以,S?DEF?S?DEC=1, FCBC2S?DCFFC23又

S?DEF1?,所以,S?BCF?4。 S?BCF4

6.(2016·广西贺州)如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为 120° .

【考点】全等三角形的判定与性质;等边三角形的性质.

【分析】先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC与BD交于点H. ∵△ACD,△BCE都是等边三角形, ∴CD=CA,CB=CE,∠ACD=∠BCE=60°, ∴∠DCB=∠ACE, 在△DCB和△ACE中,

∴△DCB≌△ACE, ∴∠CAE=∠CDB,

∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA, ∴∠AOH=∠DCH=60°, ∴∠AOB=180°﹣∠AOH=120°. 故答案为120°

【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.

7.(2016·山西)如图,已知点C为线段AB的中点,CD⊥AB且CD=AB=4,连接AD,

BE⊥AB,AE是?DAB的平分线,与DC相交于点F,EH⊥DC于点G,交AD于点H,则

5HG的长为 3-(或25?25?1)

考点:勾股定理,相似,平行线的性质,角平分线; 分析:由勾股定理求出DA, 由平行得出?1??2,由角平分得出?2??3 从而得出?1??3,所以HE=HA. 再利用△DGH∽△DCA即可求出HE, 从而求出HG

解答:如图(1)由勾股定理可得

DA=AC2?CD2?22?42?25

由 AE是?DAB的平分线可知?1??2

由CD⊥AB,BE⊥AB,EH⊥DC可知四边形GEBC为矩 形,∴HE∥AB,∴?2??3 ∴?1??3 故EH=HA 设EH=HA=x

则GH=x-2,DH=25?x ∵HE∥AC ∴△DGH∽△DCA ∴

25-xx?2DHHG?即 ?2DAAC25 解得x=5-5 故HG=EH-EG=5-5-2=3?5

8.(2016·上海)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积

与△ABC的面积的比是

【考点】三角形中位线定理.

【分析】构建三角形中位线定理得DE∥BC,推出△ADE∽△ABC,所以由此即可证明.

【解答】解:如图,∵AD=DB,AE=EC, ∴DE∥BC.DE=BC, ∴△ADE∽△ABC, ∴

=(

)2=,

=(

)2,

故答案为.

【点评】本题考查三角形中位线定理,相似三角形的判定和性质,解题的关键是记住相似三角形的面积比等于相似比的平方,属于中考常考题型. 9.(2016.山东省临沂市,3分)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为 .

【考点】相似三角形的判定与性质.

【分析】直接利用平行线分线段成比例定理得出

==,进而求出答案.

【解答】解:∵DE∥BC,EF∥AB, ∴

=

=

∵AB=8,BD=3,BF=4, ∴

=

. .

解得:FC=故答案为:

【点评】此题主要考查了平行线分线段成比例定理,正确得出比例式是解题关键.

10.(2016.山东省威海市,3分)如图,直线y=x+1与x轴交于点A,与y轴交于点B,△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3,则点B的对应点B′的坐标为 (﹣8,﹣3)或(4,3) .

【考点】位似变换;一次函数图象上点的坐标特征.

【分析】首先解得点A和点B的坐标,再利用位似变换可得结果. 【解答】解:∵直线y=x+1与x轴交于点A,与y轴交于点B, 令x=0可得y=1; 令y=0可得x=﹣2,

∴点A和点B的坐标分别为(﹣2,0);(0,1),

∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:3, ∴

=

=,

∴O′B′=3,AO′=6,

∴B′的坐标为(﹣8,﹣3)或(4,3). 故答案为:(﹣8,﹣3)或(4,3).

11. (2016·江苏南京)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD.EF是△

ODB的中位线,且EF=2,则AC的长为________.

8答案:

3考点:三角形的中位线,三角形相似的性质。

解析:因为EF是△ODB的中位线,EF=2,所以,DB=4, 又AC∥BD,所以,

ACOC28??,所以,AC=. DBOD3312.(2016·江苏苏州)如图,在平面直角坐标系中,已知点A、B的坐标分别

为(8,0)、(0,2),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线第一次垂直时,点P的坐标为 (1,) .

【考点】坐标与图形性质;平行线分线段成比例;相似三角形的判定与性质.【分析】先根据题意求得CD和PE的长,再判定△EPC∽△PDB,列出相关的比例式,求得DP的长,最后根据PE、DP的长得到点P的坐标. 【解答】解:∵点A、B的坐标分别为(8,0),(0,2) ∴BO=,AO=8 由CD⊥BO,C是AB的中点,可得BD=DO=

BO=

=PE,CD=AO=4

设DP=a,则CP=4﹣a

当BP所在直线与EC所在直线第一次垂直时,∠FCP=∠DBP 又∵EP⊥CP,PD⊥BD ∴∠EPC=∠PDB=90° ∴△EPC∽△PDB ∴

,即

解得a1=1,a2=3(舍去) ∴DP=1 又∵PE=

∴P(1,)

故答案为:(1,

13.(2016·江苏泰州)如图,△ABC中,D、E分别在AB、AC上,DE∥BC,AD:AB=1:3,则△ADE与△ABC的面积之比为 1:9 .

【考点】相似三角形的判定与性质.

【分析】由DE与BC平行,得到两对同位角相等,利用两对角相等的三角形相似得到三角

形ADE与三角形ABC相似,利用相似三角形的面积之比等于相似比的平方即可得到结果.

【解答】解:∵DE∥BC, ∴∠ADE=∠B,∠AED=∠C, ∴△ADE∽△ABC,

∴S△ADE:S△ABC=(AD:AB)2=1:9, 故答案为:1:9.

14.(2016·江苏省宿迁)若两个相似三角形的面积比为1:4,则这两个相似三角形的周长比是 1:2 .

【分析】根据相似三角形面积的比等于相似比的平方求出相似比,根据似三角形周长的比等于相似比得到答案.

【解答】解:∵两个相似三角形的面积比为1:4, ∴这两个相似三角形的相似比为1:2, ∴这两个相似三角形的周长比是1:2, 故答案为:1:2.

【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比、相似三角形面积的比等于相似比的平方是解题的关键.

(2)①证明:连接AH. ∵∠ADC=∠BAC=90°,点H、D关于AC对称, ∴AH⊥BC. ∵EG⊥AB,AE=BE, ∴点G是AB的中点, ∴HG=AG, ∴∠GAH=GHA. ∵点F为AC的中点, ∴AF=FH, ∴∠HAF=∠FHA,

∴∠FHG=∠AHF+∠AHG=∠FAH+∠HAG=∠CAB=90°, ∴FH⊥GH; ②∵EK⊥AB,AC⊥AB, ∴EK∥AC, 又∵∠B=30°, ∴AC=BC=EB=EC. 又EK=EB, ∴EK=AC, 即AK=KE=EC=CA, ∴四边形AKEC是菱形.

来%源:@~z&zstep#.com]

【点评】本题考查了四边形综合题,需要熟练掌握相似三角形的判定与性质,“直角三角形斜边上的中线等于斜边的一半”、“在直角三角形中,30度角所对的直角边等于斜边的一半”以及菱形的判定才能解答该题,难度较大. 16. (2016·江苏泰州)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;

(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.

【考点】相似三角形的判定与性质;角平分线的定义.

【分析】(1)由AB=AC,AD平分∠CAE,易证得∠B=∠DAG=∠CAG,继而证得结论;

(2)由CG⊥AD,AD平分∠CAE,易得CF=GF,然后由AD∥BC,证得△AGF∽△BGC,再由相似三角形的对应边成比例,求得答案. 【解答】(1)证明:∵AD平分∠CAE, ∴∠DAG=∠CAG, ∵AB=AC, ∴∠B=∠ACB,

∵∠CAG=∠B+∠ACB, ∴∠B=∠CAG, ∴∠B=∠CAG, ∴AD∥BC;

(2)解:∵CG⊥AD, ∴∠AFC=∠AFG=90°, 在△AFC和△AFG中,

∴△AFC≌△AFG(ASA), ∴CF=GF, ∵AD∥BC,

∴△AGF∽△BGC,

∴GF:GC=AF:BC=1:2, ∴BC=2AF=2×4=8. 17.(2016·江苏无锡)如图,已知?ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作?ABCD关于直线AD的对称图形AB1C1D (1)若m=3,试求四边形CC1B1B面积S的最大值; (2)若点B1恰好落在y轴上,试求的值.

【考点】坐标与图形性质;勾股定理;相似三角形的判定与性质. 【分析】(1)如图1,易证S?BCEF=S?BCDA=S?B1C1DA=S?B1C1EF,从而可得S?BCC1B1=2S?BCDA=﹣4(n﹣)2+9,根据二次函数的最值性就可解决问题;

(2)如图2,易证△AOD∽△B1OB,根据相似三角形的性质可得OB1=,然后在Rt△AOB1中运用勾股定理就可解决问题. 【解答】解:(1)如图1,

∵?ABCD与四边形AB1C1D关于直线AD对称,

∴四边形AB1C1D是平行四边形,CC1⊥EF,BB1⊥EF, ∴BC∥AD∥B1C1,CC1∥BB1,

∴四边形BCEF、B1C1EF是平行四边形, ∴S?BCEF=S?BCDA=S?B1C1DA=S?B1C1EF, ∴S?BCC1B1=2S?BCDA. ∵A(n,0)、B(m,0)、D(0,2n)、m=3, ∴AB=m﹣n=3﹣n,OD=2n,

∴S?BCDA=AB?OD=(3﹣n)?2n=﹣2(n2﹣3n)=﹣2(n﹣)2+, ∴S?BCC1B1=2S?BCDA=﹣4(n﹣)2+9. ∵﹣4<0,∴当n=时,S?BCC1B1最大值为9;

(2)当点B1恰好落在y轴上,如图2, ∵DF⊥BB1,DB1⊥OB,

∴∠B1DF+∠DB1F=90°,∠B1BO+∠OB1B=90°, ∴∠B1DF=∠OBB1. ∵∠DOA=∠BOB1=90°, ∴△AOD∽△B1OB, ∴∴

==

, ,

∴OB1=.

由轴对称的性质可得AB1=AB=m﹣n. 在Rt△AOB1中, n2+()2=(m﹣n)2, 整理得3m2﹣8mn=0. ∵m>0,∴3m﹣8n=0, ∴=.

18.(2016?江苏省扬州如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求证: =;

(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)=

=

,如T(60°)=1.

①理解巩固:T(90°)= ,T= ,若α是等腰三角形的顶角,则T(α)的取值范围是 0<T(α)<2 ;

②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1). (参考数据:T≈1.97,T(80°)≈1.29,T(40°)≈0.68) 【考点】相似形综合题. 【分析】(1)证明△ABC∽△DEF,根据相似三角形的性质解答即可; (2)①根据等腰直角三角形的性质和等腰三角形的性质进行计算即可;

②根据圆锥的侧面展开图的知识和扇形的弧长公式计算,得到扇形的圆心角,根据T(A)的定义解答即可.

【解答】解:(1)∵AB=AC,DE=DF, ∴

=

又∵∠A=∠D, ∴△ABC∽△DEF, ∴

=

(2)①如图1,∠A=90°,AB=AC, 则

=

∴T(90°)=, 如图2,∠A=90°,AB=AC, 作AD⊥BC于D, 则∠B=60°, ∴BD=

AB,

∴BC=AB, ∴T=;

∵AB﹣AC<BC<AB+AC, ∴0<T(α)<2,

故答案为:;;0<T(α)<2; ②∵圆锥的底面直径PQ=8,

∴圆锥的底面周长为8π,即侧面展开图扇形的弧长为8π, 设扇形的圆心角为n°, 则

=8π,

解得,n=160, ∵T≈1.97,

∴蚂蚁爬行的最短路径长为1.97×9≈17.7.

19.(2016?呼和浩特)如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线

于点D,延长DA交△ABC的外接圆于点F,连接FB,FC. (1)求证:∠FBC=∠FCB;

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库2024年全国数学中考试题分类汇编第一期专题26-图形的相似与位似在线全文阅读。

2024年全国数学中考试题分类汇编第一期专题26-图形的相似与位似.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/181839.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219