裂项求和
裂项求和与倒序相加、错位相减、分组求和等方法一样,是解决一些特殊数列的求和问题的常用方法.这些独具特点的方法,就单个而言,确实精巧, 例子:
求和:1/2+1/6+1/12+1/20
=1/(1*2)+1/(2*3)+1/(3*4)+1/(4*5)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5) =1-1/2+1/2-1/3+1/3-1/4+1/4-1/5 =1-1/5=4/5
在裂项求和中最常见的是已知an(数列)求和。一般在高二数学中存有,是一类规律性题目。
一、基本概念:
1、 数列的定义及表示方法: 2、 数列的项与项数:
3、 有穷数列与无穷数列:
4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an 6、 数列的前n项和公式Sn:
7、 等差数列、公差d、等差数列的结构: 8、 等比数列、公比q、等比数列的结构:
二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= a1+a2+a3+?+an
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
11、等差数列的前n项和公式:Sn= :(a1+an)×n÷2 或Sn=na1+n(n-1)d÷2 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn=
三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、??仍为等差数列。
15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、??仍为等比数列。
16
18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an bn}、 、 仍为等比数列。
20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq;
四个数成等比的设法:a/q3,a/q,aq,aq3(公比为q2) 24、{an}为等差数列,则 (c>0)是等比数列。
25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则
(2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则,
四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。
28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、求数列{an}的最大、最小项的方法: ① an+1-an=?? 如an= -2n2+29n-3 ② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an=
33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
裂项
只要记住一个(a±b)/a×b=1/a ± 1/b
多做题掌握技巧即可,万变不离其踪,都是这个公式的拓展。 列项求和的推算
推荐答案 裂项法 裂项法求和
17
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)1/n(n+1)=1/n-1/(n+1) 例:
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)] 例:
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)] 例:
(4)1/(√a+√b)=[1/(a-b)](√a-√b) 例:
(5) n?n!=(n+1)!-n! 例:
[例] 求数列an=1/n(n+1) 的前n项和.
解:设 an=1/n(n+1)=1/n-1/(n+1) (裂项)
则 Sn=1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和) = 1-1/(n+1) = n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
注意: 余下的项具有如下的特点
1余下的项前后的位置前后是对称的。 2余下的项前后的正负性是相反的。
一、基本概念
1、 数列的定义及表示方法:按一定次序排列成的一列数叫数列 2、 数列的项an与项数n
3、 按照数列的项数来分,分为有穷数列与无穷数列
4、 按照项的增减规律分为:递增数列,递减数列,摆动数列和常数列 5、 数列的通项公式an 6、 数列的前n项和公式Sn
7、 等差数列、公差d、等差数列的结构:an=a1+(n-1)d 8、 等比数列、公比q、等比数列的结构:an=a1?q^(n-1) 二、基本公式:
9、一般数列的通项an与前n项和Sn的关系:an= Sn-Sn-1
10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn=a1?n+1/2?n?(n+1)?d
18
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
12、等比数列的通项公式: an= a1?q^(n-1) an= ak?q^(n-k) (其中a1为首项、ak为已知的第k项,an≠0)
13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn=a1?(q^n-1)/(q-1) 三、有关等差、等比数列的结论
14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
15、等差数列中,若m+n=p+q,则 am+an=ap+aq 16、等比数列中,若m+n=p+q,则 am?an=ap?aq
17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
18、两个等差数列与的和差的数列{an+bn}仍为等差数列。 19、两个等比数列与的积、商、倒数组成的数列 {an?bn}、{an/bn} 、{1/(an?bn)} 仍为等比数列。
20、等差数列的任意等距离的项构成的数列仍为等差数列。 21、等比数列的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;
四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3
四、数列求和的常用方法:
公式法、裂项相消法、错位相减法、倒序相加法等。(关键是找数列的通项结构) 24、分组法求数列的和:如an=2n+3n 25、错位相减法求和:如an=n?2^n 26、裂项法求和:如an=1/n(n+1) 27、倒序相加法求和:如an= n
28、求数列的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an=
③ an=f(n) 研究函数f(n)的增减性 如an= an^2+bn+c(a≠0)
29、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 a1>0,d<0时,满足的项数m使得Sm取最大值. (2)当 a1<0,d>0时,满足的项数m使得Sm取最小值. 在解含绝对值的数列最值问题时,注意转化思想的应用。
19
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库分数列项在线全文阅读。
相关推荐: