考研必备翟中和《细胞生物学》资料细胞要点及课

来源:网络收集 时间:2025-05-02 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

来的质膜上再利用,如转铁蛋白及转铁蛋白受体就是通过这种方式再循环。③受体和配体一起进入溶酶体被降解, 如在某些信号传导中,信号分子与受体一起被溶酶体降解。④受体和配体一起通过载体小泡被转运到相对的细胞质膜面, 这就是转胞吞作用。被内吞进来的膜成分有三种可能的去向: 第一种是随着细胞质膜受体分选产生的小泡一起重新回到质膜上再循环利用;第二种可能是同高尔基体融合,成为高尔基体膜的一个部分,这些膜有可能通过小泡的回流同内质网融合;第三种可能是随着溶酶残体的消失而消失。 22. 简述LDL经受体介导的内吞作用被吞入细胞和被利用过程。

答:基本过程是: (1) LDL在质膜的被膜小窝中与受体结合;(2)小窝向内出芽; (3)形成被膜小泡;(4)网格蛋白去聚合形成无被小泡(初级内体);(5)内体调整pH至酸性,使LDL与受体脱离(次级内体); (6) 受体被分拣出来,被载体小泡运回到质膜; (7)通过膜融合,受体回到质膜再利用;(8)LDL被分选进入没有受体的小泡, 与初级溶酶体融合形成次级溶酶体;(10)在次级溶酶体中,蛋白质被降解成氨基酸,胆固醇脂被水解产生胆固醇和脂肪酸。

23. 什么是低密度脂蛋白(LDL), 与动脉粥样硬化(动脉变窄)有什么关系?

答: LDL是一种球形颗粒的脂蛋白,直径为22nm, 核心是1500个胆固醇酯;外面由800个磷脂和500个未酯化的胆固醇分子包裹,由于外被脂分子的亲水头露在外部,使LDL能够溶于血液中;最外面有一个相对分子质量为55 kDa的蛋白,叫辅基蛋白B�100(apolipoprotein B-100), 它能够与特定细胞的表面受体结合。 LDL受体蛋白是一个单链的糖蛋白,由839个氨基酸组成,跨膜区由22个疏水的氨基酸组成,为单次跨膜蛋白。LDL受体蛋白合成后被运输到细胞质膜,即使没有相应配体的存在, LDL受体蛋白也会在细胞质膜集中浓缩并形成被膜小窝,

LDL摄入细胞是通当血液中有LDL颗粒,可立即与LDL的apoB-100结合形成LDL-受体复合物。

过辅基蛋白与受体的结合。一旦LDL与受体结合,就会形成被膜小泡被细胞吞入,接着是网格蛋白解聚, 受体回到质膜再利用, 而LDL被传送给溶酶体, 在溶酶体中蛋白质被降解, 胆固醇被释放出来用于质膜的装配, 或进入其他代谢途径。血液中LDL的水平与动脉粥样硬化(动脉变窄)有极大的关系。动脉阻塞是一个复杂的、尚不清楚的过程, 其中也包括血管内壁含有LDL血斑的沉积。动脉粥样硬斑不仅降低血液流通,也是血凝块形成的部位, 它可阻塞血管中血液的流通。在冠状动脉中形成的血凝块会导致心肌梗塞。LDL受体缺陷是造成血液中LDL水平升高的主要原因。

24. 什么是衔接蛋白? 在小泡装配中起什么作用?

答: 参与披网格蛋白小泡组装的一种蛋白质, 相对分子质量为100kDa, 在披网格蛋白小泡组装中与披网格蛋白小泡组装披网格蛋白小泡组装和受体的细胞质结构域相互作用, 起衔接作用。目前已知有三种衔接蛋白:AP1、AP2和AP3。AP2:细胞质膜中被包装到网格蛋白小窝的受体蛋白的细胞质结构域具有Tyr-X-X-φ序列或Leu-Leu序列,这种信号序列在小泡装配时能够与AP2相互作用, 质膜上没有该信号序列的蛋白不能同AP2作用因而不能被包装到披网格蛋白小泡中。衔接蛋白AP2是一个二聚体,并且是由α衔接蛋白(α链)和β衔接蛋白(β链)两种衔接蛋白组成的异二聚体。AP1: 衔接蛋白AP1参与反面高尔基体的披网格蛋白小泡的出芽。由于M6P受体蛋白既存在于反面高尔基体又存在于细胞质膜,所以这种受体既能同AP1作用又能与AP2相互作用。AP3: 最近在酵母和鼠的研究中又鉴定了一种衔接蛋白, AP3,具有AP3突变的酵母,反面高尔基体的某些蛋白就不能被运输到液泡、溶酶体。 25. 简要叙述披网格蛋白小泡形成和运输的基本过程及参与的因子。

答:包括三个基本过程: ① 被膜小窝(clathrin-coated pit)的形成网格蛋白被膜小窝是披网格蛋白小泡形成过程中的一个中间体。在胞吞过程中, 吞入物(配体)先同膜表面特异受体结合, 然后, 网格蛋白装配的亚基结合上去, 使膜凹陷成小窝状。由于这种小窝膜外侧结合有许多网格蛋白, 故称为网格蛋白被膜小窝。它大约在一分钟之内就会转变成被膜小泡。② 披网格蛋白小泡的形成在形成了网格蛋白被膜小窝之后, 很快通过出芽的方式形成小泡,即披网格蛋白小泡, 小泡须在发动蛋白的作用下与质膜割离。由于此时的小泡外面有网格蛋白包被, 故称为被膜小泡。③ 无被小泡的形成披网格蛋白小泡形成之后, 很快脱去网格蛋白的外被, 成为无被小泡。在真核细胞中有一种分子伴侣Hsc70催化披网格蛋白小泡的外被去聚合形成三腿复合物, 并重新用于披网格蛋白小泡的装配。在上述过程中, 除网格蛋白外, 涉及的因子有: 配体、受体、衔接蛋白、发动蛋白和分子伴侣Hsc70。另外Ca2+ 也参与了披网格蛋白小泡包被的形成和去被的过程。在形成包被时, 钙泵将Ca2+ 泵出细胞外, 使胞质中的Ca2+ 保持低浓度, 有利于有被小窝的形成。一旦形成被膜小泡, Ca2+ 同网格蛋白的轻链结合, 使包被不稳定而脱去。

26. 什么是小泡寻靶的SNARE假说(SNARE hypothesis)? 提出的依据是什么?

答:SNARE假说是James Rothman和他的同事根据对动物细胞融合研究的发现提出的。, 提出有关小泡寻靶的SNARE 假说(SNARE hypothesis)。他们发现动物细胞融合需要一种可溶性的细胞质蛋白,叫做N-乙基马来酰亚胺敏感的融合蛋白(N-ethylmaleimide-sensitive fusion protein,NSF)以及其它几种可溶性的NSF附着蛋白(soluble NSF attachment protein,SNAPs)。NSF是一种四聚体,四个亚基都相同。SNAPs 有α-、β-和γ- SNAPs等。由于NSF/ SNAPs能够介

导不同类型小泡的融合,说明它没有特异性。据此Rothman等提出一种假设:膜融合的特异性是由另外的膜蛋白提供的,把这种蛋白称为SNAP受体蛋白(SNAP receptors),或称为SNAREs,这种蛋白可以作为膜融合时SNAPs的附着点。按照Rothman的SNARE假说,每一种运输小泡都有一个特殊的V-SNARE(vesicle-SNAP receptor)标志,能够同适当的靶膜上的T-SNARE(target-SNAP receptor)标志相互作用。一种运输小泡在没有找到合适的靶位点之前有可能同几种不同的膜位点进行过暂时性地接触,这种接触是不稳定的,只有找到真正的靶位点才会形成稳定的结构。也就是说,不同的小泡上具有不同的V-SNARE, 它能识别靶膜上特异的T-SNARE并与之结合,以此保证运输小泡到达正确的目的地。存在于小泡膜上的V-SNAREs是在外被体外被形成时共包装到转运小泡上的, 它同靶位点膜上的T-SNAREs蛋白的结合决定了转运小泡的选择性地停靠。

27. 什么是Rab蛋白? 在小泡转运中有什么作用?对于Rab的功能有否实验证明?

答:Rab蛋白是一类调节型的单体GTPase, 所有的Rab蛋白都是由大约200个氨基酸组成的,并且有类似于Ras蛋白的重叠结构。它能够结合GTP并将GTP水解,因此认为Rab蛋白通过GTP-GDP的循环来调节小泡的融合。 Rab蛋白在小泡的转运和融合中的调节机理可能是:供体膜上的鸟嘌呤核苷释放蛋白(GNRP)识别胞质溶胶中特异的Rab蛋白,诱导GDP的释放并和GTP结合,进而改变Rab蛋白的构型,改变了构型的Rab蛋白暴露出其脂基团,从而将Rab蛋白锚定到膜上。运输小泡形成后,在V-SNARE的引导下,到达受体膜的T-SNARE部位,Rab帮助小泡与受体膜结合。Rab蛋白上的GTP水解后从膜中释放出来,而小泡却锁定在受体膜上,释放出Rab进入胞质溶胶进行再利用。有一些离体实验支持Rab蛋白在小泡运输和融合中的作用。如Rab5定位与初级内体的膜上, 无细胞系统实验表明, 初级内体间的相互融合需要Rab5的存在, 也不能用其它类Rab蛋白取代。加入Rab和GTP后初级内体间就能发生融合, 说明Rab和GTP是初级内体融合的触发剂。同样发现Rab1蛋白是ER同高尔基体小泡所必需的。

28. 生物膜是怎样合成的?可能的机理是什么?

答:关于膜的合成,曾提出两个模型:一个自装配模型(spontaneous self-assembly), 即膜是理由蛋白、脂和糖自动组装的, 但与体外实验结果不符。因为用纯化的脂和蛋白在体外装配时总是形成脂质体,这种脂质体与活细胞膜的一个根本区别是:脂质体的结构总是对称的, 而活细胞中膜结构则是不对称的。第二个是不断更新模型, 该模型认为膜的合成通过不断地将脂和蛋白插入已有的膜,即由已有膜的生长而来。这一模型比较符合细胞膜结构的动态性质, 由于细胞的胞吞和胞吐作用以及小泡运输,使膜处于动态平衡状态, 这样膜也就不必重新合成,而是在原有的基础上不断更新。膜的合成涉及脂、蛋白和糖的来源问题。膜脂有两种来源:①通过磷脂转运蛋白,如线粒体、叶绿体、过氧化物酶体等细胞器膜中的脂就是靠这种方式运送的。②通过出芽和膜融合,如ER通过出芽形成分泌小泡运送蛋白质时,膜脂也随之运送到高尔基体,并通过高尔基体形成分泌小泡将膜脂运送到细胞质膜。由于内质网与核膜相连, 通过细胞分裂和核膜重建,ER上合成的膜脂也就转移到核膜。原核生物没有内质网,它的磷脂是在质膜上合成并由类似于真核生物的转位蛋白调整磷脂在膜上的分布。关于膜脂的不对称性分布,有几种可能的方式∶一种是磷脂交换蛋白对磷脂的运输和插入是选择性的;第二种解释是热动力学驱使磷脂的不对称分布,因为膜两侧的环境不同。另外在ER膜中有翻转酶(flippase),在新的磷脂合成之后,通过翻转酶的作用也会造成磷脂的不对称分布。膜蛋白有整合蛋白和外周蛋白。用水泡性口炎病毒(vesicular stomatitis virus,VSV)作为模式系统研究了细胞膜整合蛋白和外周蛋白的形成途径, 发现膜整合蛋白是通过内膜系统经小泡转运到质膜上的, 而外周蛋白则是在游离核糖体上合成,并以可溶的形式释放到胞质溶胶中。然后再与细胞质膜的胞质溶胶面结合,成为外周蛋白。糖则是在内质网和高尔基体腔中通过对蛋白的修饰添加的。最后在与质膜融合时,通过外翻,糖的部分位于细胞质膜的外侧。这就是为何几乎所有质膜上的糖蛋白的糖都是朝向细胞外的原因。脂锚定蛋白的形成有几种可能的机制:糖脂锚定的膜蛋白是在粗面内质网上合成,然后在ER腔中被连接到ER膜的GPI上,随后通过小泡运输,经高尔基体出芽形成小泡,最后与质膜融合,含糖的一面外翻朝向细胞外侧。脂肪酸锚定膜蛋白是水溶性的,在游离核糖体合成后释放到胞质溶胶中,然后与包埋在质膜中的脂肪酸共价结合。连接的脂肪酸包括豆蔻酸(myristic acid, 一种14碳的饱和脂肪酸)和棕榈酸(palmitic acid,一种16碳的饱和脂肪酸)。

第十章 细胞骨架与细胞运动

1.3种细胞骨架之间有什么联系?

答:其表现在:①细胞骨架在细胞内的分布与布局来看,它们相互配合,在功能上相互呼应。微管和中间纤维大都是从细胞核出发向细胞周边呈放射状伸延,并在细胞内许多部位平行分布。在靠近质膜下的细胞质中发现中等纤维在最上面,微管在次层,由微丝组成的应力纤维在下层。3种纤维间有肌动蛋白丝连接。②从功能上看活细胞内的3种骨架均起支撑作用,

微丝与微管参与细胞运动,三者均参与细胞内物质运输;均有可能参与细胞外来的信息传递。③三种骨架均在细胞的统一调控下互相密切配合完成细胞的生命活动。 2.微管在体外组装需要哪些条件,组装过程如何进行?

答:需要的条件有:①在生理温度下;②有GTP和Mg2+;③含有一定量MAPS;④中等离子强度、弱酸pH6.6~6.7;⑤微管蛋白浓度要大于临界浓度,大约为1mg/ml,当这些条件达到时,二聚体自动聚合为微管,当条件改变如温度低于4℃或加入过量的Ca2+、Mg2+浓度降低、酸碱度改变时,微管发生解聚。微管组装时,首先是α、β微管蛋白形成α、β异二聚体,α、β异二聚体形成短的原纤维,即核心形成,接着二聚体在其两端和侧面增加使之扩展成片状带,至13根原纤维时,即合拢成一段微管。 3.中间纤维是如何组装的?

答:①两个相邻亚基的对应α螺旋形成双股超螺旋,即二聚体;②二聚体以反向平行的方式组成四聚体,即一个二聚体的头部与另一个二聚体的尾部相连;③每个四聚体进一步组装成原丝;④两根原丝相互缠绕,以半分子长度交错的原则形成原纤维,即八聚体;⑤四根原纤维互相缠绕最终形成中间纤维,在横切面上有32个蛋白单体。

1. 什么是细胞骨架?在细胞内的主要功能是什么?

答: 细胞骨架是细胞内以蛋白质纤维为主要成分的网络结构,由主要的三类蛋白纤丝(filamemt)构成,包括微管、肌动蛋白纤维和中间纤维。

细胞骨架对于维持细胞的形态结构及内部结构的有序性,以及在细胞运动、物质运输、能量转换、信息传递、细胞分化等一系列方面起重要作用。

① 作为支架(scaffold),为维持细胞的形态提供支持结构,例如红细胞质膜的内部主要是靠以肌动蛋白纤维为主要成分的膜骨架结构维持着红细胞的结构。

② 在细胞内形成一个框架(framework)结构,为细胞内的各种细胞器提供附着位点。细胞骨架是胞质溶胶的组织者,将细胞内的各种细胞器组成各种不同的体系和区域网络。

③ 为细胞内的物质和细胞器的运输/运动提供机械支持。例如从内质网产生的膜泡向高尔基体的运输、由胞吞作用形成的吞噬泡向溶酶体的运输通常都是以细胞骨架作为轨道的;在有丝分裂和减数分裂过程中染色体向两极的移动,以及含有神经细胞产生的神经递质的小泡向神经细胞末端的运输都要依靠细胞骨架的机械支持。 ④ 为细胞从一个位置向另一位置移动提供支撑。一些细胞的运动, 如伪足的形成也是由细胞骨架提供机械支持。典型的单细胞靠纤毛和鞭毛进行运动, 而细胞的这种运动器官主要是由细胞骨架构成的。

⑤为信使RNA提供锚定位点,促进mRNA翻译成多肽。用非离子去垢剂提取细胞成分可发现细胞骨架相当完整,许多与蛋白质合成有关的成分同不被去垢剂溶解的细胞骨架结合在一起。

⑥ 参与细胞的信号传导。有些细胞骨架成分常同细胞质膜的内表面接触,这对于细胞外环境中的信号在细胞内的传导起重要作用。

⑦ 是细胞分裂的机器。有丝分裂的两个主要事件, 核分裂和胞质分裂都与细胞骨架有关, 细胞骨架的微管通过形成纺锤体将染色体分开, 而肌动蛋白丝则将细胞一分为二。 2. 如何用荧光显微镜研究细胞骨架? 其基本原理是什么?

答: 用荧光显微镜研究细胞骨架主要是基于两方面的原理:一是组成细胞骨架的蛋白亚基能够同小分子的荧光染料共价结合, 使细胞骨架带上荧光标记, 发出荧光。二是可以制备细胞骨架的荧光抗体, 然后用荧光抗体进行细胞骨架的研究。借助于这两方面原理, 可用荧光显微镜研究细胞骨架的动力学。例如,用小分子的荧光染料标记细胞骨架的蛋白亚基, 就可以追踪细胞骨架蛋白在细胞活动中的作用,包括组装、去组装、物质运输等。这种方法还有一个好处,就是在活细胞时就可以观察。

可用荧光抗体研究以很低浓度存在的蛋白质在细胞内的位置, 因为标记的荧光抗体同特异的蛋白具有很高的亲和性, 只要有相应的蛋白存在, 就一定会有反应, 因为这种反应是特异的, 通过荧光显微镜观察就可确定。荧光抗体既可以直接注射活细胞进行反应,也可以加到固定的细胞或组织切片中进行反应和分析。用这种方法对微管、肌动蛋白纤维、中间纤维进行了成功定位。

3. 微管组装的基本过程怎样?

答: 离体实验表明, 微管蛋白的体外组装分为成核(nucleation)和延长(elongation)两个反应, 其中成核反应是微管组装的限速步骤。成核反应结束时, 形成很短的微管, 此时二聚体以比较快的速度从两端加到已形成的微管上, 使其不断加长。虽然在体外组装过程中二聚体可以在微管的两端加减, 然而在大多数体外实验的条件下, 二聚体的加减优先在微管的一端进行, 这一端被称为正端(+), 另外一端则被称为负端(-)。

根据体外实验的结果推测微管组装的主要过程是∶首先, α微管蛋白和β微管蛋白形成长度为8nm的αβ二聚体, αβ二聚体先沿纵向聚合形成一个短的原纤维,这种原纤维可能是不

够稳定的。第二步是以原纤维为基础,经过侧面增加二聚体而扩展为弯曲的片状(sheet)结构,这种片状结构的稳定性大大提高。第三步是αβ二聚体平行于长轴重复排列形成原纤维。当螺旋带加宽至13根原纤维时, 即合拢形成微管的壁。游离的、在β微管的交换位点结合有GTP的αβ微管蛋白二聚体再不断加到这一微管的端点使之延长。

在同一根微管的13条原纤维中, 所有αβ二聚体的取向都是相同的, 所以微管的两端是不等价的, 这就是微管的极性。在αβ二聚体微管蛋白掺入到新生微管之后不久,β亚基上的GTP被水解成GDP,如果聚合作用比水解作用快,那么,就会在微管的一端产生结合有GTP的帽子结构,这就是(+)端,通常(+)端聚合作用的速度是(-)端聚合作用的两倍。 4. 微管体外组装需要哪些基本条件?GTP在组装中起什么作用?

答: 1972年,Richard Weisenberg 首次在体外组装微管获得成功。他将脑的匀浆物置于37℃,然后添加Mg2+,GTP和EGTA(EGTA是Ca2+的螯合剂,抑制聚合作用)。他发现,只要降低或提高反应温度就可以使微管去组装和重组装。通过体外组装实验,还发现在反应系统中添加微管碎片能够加速微管的组装,加入的微管碎片起着“种子”的作用。根据这一实验, 推测微管组装的基本条件是: αβ微管蛋白二聚体、GTP、Mg2+和合适的温度。

聚合过程需要加入GTP,但对于微管的组装来说不需要GTP水解成GDP。实验中发现αβ微管蛋白二聚体加入到微管之后不久所结合的GTP就被水解成GDP。推测GTP的作用有两个: 一是αβ微管蛋白二聚体与GTP结合之后才能作为微管组装的构件,二是通过GTP水解使微管去组装, 保持微管的动态性质。

5. 什么是微管的动态不稳定性? 造成的根本原因是什么?

答: 微管一直处于组装和去组装的动态状态, 称为动态不稳定性。影响微管稳定性的决定因素有两个: 游离微管蛋白的浓度和GTP水解成GDP的速度。高浓度的微管蛋白适合微管的生长, 低浓度的微管蛋白引起GTP的水解, 形成GDP帽, 使微管解聚。GTP的低速水解适合于微管的连续生长, 而快速的水解造成微管的解聚, 细胞内的微管处于动态不稳定状态(dynamic instability)。

6. 什么是微管的GTP帽和GDP帽?对微管的动态性质有什么影响?

答: 所谓微管的GTP或GDP帽就是微管正端αβ微管蛋白二聚体结合GTP或GDP的状态。如果微管正端结合的是由结合GTP的微管蛋白二聚体组成的GTP帽结构, 微管就趋于生长, 如果微管的正端结合的是由结合GDP的微管蛋白二聚体组成的GDP帽结构, 这种微管就趋于缩短。决定微管正端是GTP帽还是GDP帽, 又受两种因素影响, 一是结合GTP的游离微管蛋白二聚体的浓度, 二是GTP帽中GTP水解的速度。

当(+)端形成GTP帽,而游离微管蛋白二聚体的浓度又很高时,微管趋向于生长。由于结合GTP的游离微管蛋白二聚体的浓度降低,引起微管延长的速率下降,随着GTP水解的不断进行最后GTP帽结构转变成GDP,逐渐使微管变得不稳定,趋于解聚。细胞内微管的这两种状态是不断发生的, 因为细胞内不断有微管解聚,又不断地有新微管的组装。 7. 什么是轴突运输?有什么特点?

答: 在神经元细胞中, 轴突末端到细胞体的距离很长, 并且轴突末梢要释放大量的神经递质, 所以神经元必须不断供给大量的物质, 包括蛋白质、膜, 以补充因轴突部位的胞吐而丧失的成分。由于核糖体只存在于神经细胞的细胞体和树突中, 在轴突和轴突末梢没有蛋白质的合成, 所以蛋白质和膜必须在细胞体中合成, 然后运输到轴突, 这就是轴突运输。 轴突中以微管为基础的运输有两种方式∶顺向运输和逆向运输。

神经细胞的细胞体是神经细胞的中心,是圆形的部分。细胞体中有细胞核、内质网、高尔基体,以及其它的细胞器。细胞体中合成的蛋白质有些以分泌小泡的形式向轴突末梢运输,如神经递质等。这些分泌小泡主要是靠驱动蛋白通过微管运向轴突末梢,这叫外向运输(outward transport),又称顺向运输(anterograde transport)。轴突末梢膜内吞形成的内吞泡从末梢向细胞体部的运输则是由细胞质动力蛋白沿微管向内运输的,这种方向的运输称为向内运输(inward transport),或称为逆向运输(retrograde transport)。另外,不同的物质其运输的速度是不同的,可分为三类: 第一类是快速运输的物质, 主要是各种膜泡, 大约250mm/天, 或3μm/s 。第二类是慢速运输物质, 主要是聚合的骨架蛋白, 运输速度每天不到1mm。像线粒体之类的细胞器的运输速度介于二者之间, 是第三类物质。 8. 纤毛和鞭毛的结构组成和特点是什么?

答: 纤毛和鞭毛都含有一个规则排列的由微管相互连接形成的骨架,称为轴丝(axoneme)。轴丝的外面由膜包裹。组成轴丝的微管呈规律性排列,即9组二联管在周围成等距离地排列成一圈, 中央有两根单个的微管, 成为\的微管形式。中央的两个微管之间由细丝相连, 外包有中央鞘。周围的9组二联管, 近中央的一根称为A管, 另一条为B管。

A管上有两个短臂长约15nm, 粗约5nm, 两个短臂之间的间隔约24nm。外臂指向邻近一对微管的B微管, 组成臂的成分是动力蛋白。纤毛的动力蛋白是一种多亚基的ATP酶, 能为Ca2+、Mg2+所激活。

中央微管和A管是完全微管, 由13条原纤维组成。B微管只有10条原纤维, 有3条是同A

微管共用的,故每组周围微管的原纤维共有23条。在两个相邻二联管之间有微管连丝蛋白(nexin)将相邻微管二联体结合在一起。另外, 每个二联管的A管上有放射辐条(radial spoke)与中央微管鞘相连。

纤毛中的微管排列并不始终如一, 在纤毛顶部每组微管逐渐减为一条, 达到顶端时, 它们就相互融合。每一纤毛的基部起始于细胞浅表部的基体(basal body), 基体的结构与中心粒相同, 它缺少两根中央微管, 而周围 9 组是三联管。

9. 什么是纤毛/鞭毛的微管滑动模型(sliding-microtubule model)? 机理如何?

答: 微管滑动模型是说明纤毛和鞭毛运动机制的一种学说。这一学说的主要内容是∶纤毛和鞭毛的动力蛋白头部与相邻二联管的B微管接触, 促进同动力蛋白结合的ATP水解, 并释放ADP和Pi;由于ATP水解, 改变了A微管动力蛋白头部的构象, 促使头部朝向相邻二联管的正极滑动, 使相邻二联管之间产生弯曲力;新的ATP结合,促使动力蛋白头部与相邻B微管脱离;ATP水解, 使动力蛋白头部的角度复原;带有水解产物的动力蛋白头部与相邻二联管的B微管上的另一位点结合, 开始下一个循环。 10. 简述微丝装配的三个基本过程。

答: 第一个过程是成核作用(nucleation), G-肌动蛋白慢慢地聚合形成短的、不稳定的寡聚体,该过程较慢。一旦寡聚体达到某一种长度(约3~4个亚基),它就可以作为“种子”,或者“核”,进入第二个过程∶快速延长阶段。在延长阶段,G-肌动蛋白单体快速地从短纤维的两端添加上去。生长期可被已形成的F-肌动蛋白的自发或突然断裂作用所加强,因为断裂的短F-肌动蛋白纤维的末端可以作为新的核进行延长反应。可以在反应体系中添加小的F-肌动蛋白纤维缩短成核期,或除去成核作用。随着F-肌动蛋白的不断生长,游离的G-肌动蛋白单体的浓度越来越低,一直到同F-肌动蛋白纤维的浓度相平衡。一旦达到这种平衡,F-肌动蛋白的装配进入第三阶段∶稳定期(steady state)。之所以称为稳定期,是因为在这个时期,G-肌动蛋白同F-肌动蛋白纤维末端上的亚基进行交换,但不改变F-肌动蛋白纤维的量。 11. 有哪些因素影响微丝的装配?

答: 同微管的装配一样, 微丝的装配同样受肌动蛋白临界浓度的影响。在正常的体外条件下,单体的临界浓度(critical concentration,Cc)Cc是0.1 μM。高于该值,G-肌动蛋白倾向于聚合,低于该值,F-肌动蛋白将会解聚。所以这个值很重要,可用它来测定溶液中G-肌动蛋白聚合的能力。

在肌动蛋白纤维的装配过程中,除了受G-肌动蛋白临界浓度的影响,还受一些离子浓度的影响。如向G-肌动蛋白溶液中添加Mg2+、 K+、Na+, 可诱导G-肌动蛋白聚合成F-肌动蛋白。该过程是可逆的, 当这些离子的浓度较低时, F-肌动蛋白趋于去聚合, 而在Mg2+和高浓度K+或Na+的溶液诱导下, G-肌动蛋白则装配成纤维状肌动蛋白。利用这一特性,可以将肌动蛋白经过几次反复的聚合-解聚循环,从细胞中提纯出来。

12. 比较三种类型肌球蛋白: 肌球蛋白Ⅰ、肌球蛋白Ⅱ和肌球蛋白Ⅴ结构和功能的异同。 答: 在结构上, 三类肌球蛋白都是由一个重链和几个轻链组成,并组成三个结构和功能不同的结构域∶头部结构域是最保守的结构域,它含有与肌动蛋白、ATP结合的位点,负责产生力。与头部相邻的结构域是α螺旋的颈部(α-helical neck region),它通过同钙调素或类似钙调素的调节轻链亚基的结合来调节头部的活性。尾部结构域含有决定尾部是同膜结合还是同其它的尾部结合的位点。

三种类型的肌球蛋白在结构上有一些差异。肌球蛋白Ⅱ和肌球蛋白Ⅴ是二聚体,肌球蛋白Ⅰ是单体蛋白,它同肌球蛋白Ⅴ一样,含有同膜结合的尾。这三种肌球蛋白间的差异在于同颈部结合的轻链的数量和类型。肌球蛋白Ⅰ和肌球蛋白Ⅴ的轻链是钙调素,而肌球蛋白Ⅱ含有两个不同的轻链,一个是必需轻链,另一个叫调节轻链。两种轻链都是类似于钙调蛋白的钙结合蛋白,但是与钙结合的性质是不同的。肌球蛋白轻链的相似性说明所有的肌球蛋白都是通过钙这一相同的机制调节的。轻链的差异保证了不同的肌球蛋白在细胞钙信号的调节下行使不同的功能。

肌球蛋白Ⅱ的相对分子质量为500kDa, 是一个长形而不对称的分子, 长约16nm, 直径2nm。电镜观察证明, 肌球蛋白有两个球形头部和一个长的杆部。肌球蛋白Ⅱ含有两条相同的长肽链和4条短肽链, 长肽链的相对分子质量为200kDa, 称为重链(heavy chain), 短肽链称为轻链(light chain)。

如果用胰凝乳蛋白酶(chymotrypsin)处理肌球蛋白Ⅱ, 在尾部中间可使肌球蛋白断裂, 产生两个片段, 带有头部的片段称为重酶解肌球蛋白(heavy meromyosin, HMM), 尾部的片段称为轻酶解肌球蛋白(light meromyosin, LMM)。如果用木瓜蛋白酶(papain)进一步处理HMM, 则从头部分离产生两个碎片,分别称为S1和S2。

通过遗传分析和突变的研究,发现这三种肌球蛋白的功能完全不同,但是它们具有分子发动机这一基本相同的作用∶肌球蛋白Ⅱ为肌肉收缩和胞质分裂提供力,而肌球蛋白Ⅰ和Ⅴ则涉及细胞骨架与膜之间的相互作用,如膜泡的运输。 13. 肌球蛋白的运动机理怎样?

细胞要点(翟中和细胞生物学) Chapter 1.2.3

1、1838年,德国植物学家施莱登(M.J.Schleiden)发表了《植物发生论》,指出细 胞是构成植物的基本单位。1839年,德国动物学家施旺(M.J.schwann)发表了《关 于动植物的结构和生长的一致性的显微研究》,指出动植物都是细胞的聚合物。两人 共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位,这就 是著名的“细胞学说”(celltheory)。 2、支原体(mycoplast):又称霉形体,为目前发现的最小的最简单的细胞,也是唯 一一种没有细胞壁的原核细胞。支原体细胞中唯一可见的细胞器是核糖体。 3、朊病毒(prion):仅由有感染性的蛋白质构成的生命体。 4、真核细胞与原核细胞的差异: 原核细胞 真核细胞

无真正细胞核,遗传物质无核膜包被,散状分布或相对集中分布形成核区或拟核 区 具完整细胞核,有核膜包被,还有明显的核仁等构造

遗传物质DNA分子仅一条,不与蛋白质结合,呈裸露状态 DNA分子有多条,常与蛋 白质结合成染色质或染色质

无内膜系统,缺乏膜性细胞器 具发达的内膜系统

不存在细胞骨架系统,无非膜性细胞器 具由微管、微丝、中间纤维等构成的细胞 骨架系统

基本表达两个基本过程即转录和翻译相偶联 遗传信息的转录和翻译过程具有明显 的阶级性和区域性

细胞增殖无明显周期性,以无丝分裂进行 增殖以有丝分裂进行,周期性很强 细胞体积较小 细胞体积较大

细胞之中有不少的病原微生物 细胞为构成人体和动植物的基本单位 5、细胞生物学研究的主要技术与手段: a.观察细胞显微结构的光学显微镜技术; b.探索细胞超微结构的电子显微镜技术;

c.研究蛋白质和核酸等生物大分子结构的X射线衍射技术; d.用于分离细胞内不同大小细胞器的离心技术; e.用于培养具有新性状细胞的细胞融合和杂交技术; f.使机体细胞能在体外长期生长繁殖的细胞培养技术;

g.能对不同类型细胞进行分类并测其体积、DNA含量等数据的流式细胞术;

h.利用放射性同位素对细胞中的DNA、RNA或蛋白质进行定位的放射自显影技术; i.用于探测基因组中英雄模范种基因是否存在,是否表达以及拷贝数多少的核酸 分子杂交技术;

j.能将细胞中的特定蛋白质或梳酸分子进行分离纯化的层析技术和电泳技术; k.对细胞化学定性、定量分析的显微分光光度术,显微荧光光度术,核磁共振技 术。 Chapter4

1、生物膜(biomembrane)结构模型的演化:a.1925三明治模型;b.1959单位膜模 型(unitmembranemodel);c.1972生物膜的流动镶嵌模型;d.1975晶格镶嵌模型; e.1977板块镶嵌模型;f.脂筏模型(lipidraftsmodel) 2、细胞膜(cellmembrane):指围绕在细胞最外层,由脂质和蛋白质构成的生物膜 ,又称质膜,厚度6-10nm,是细胞间或细胞与外界环境间的分界,维持着细胞内外环 境的差别。电镜下,CM呈三层结构,磷脂双分子层是膜的骨架,每个磷脂分子都可以 自由地作横向运动,其结果使膜具有流动性、弹性。磷脂双分子层的内外两侧是膜蛋 白,有时镶嵌在骨架中,也能作横向运动。 3、流动镶嵌模型(fluidmosailmodel):认为球形膜蛋白分子以各种镶嵌形式与磷 脂双分子层相结合,有的际在内外表面,有的部分或全部嵌入膜中,有的贯穿膜的全 层,这些大多为功能蛋白。这一模型强调了膜的流动性和不对称性,较好地体现细胞 的功能特点,被广泛接受。 4、脂质体(liposome):是根据磷脂分子可在水相中自我装配成稳定的脂双层膜的 球形结构的趋势而制备的人工球形脂质小囊。 5、整合蛋白(integralprotein):又称内在蛋白,跨膜蛋白部分或全部镶嵌在细胞

膜中或内外两侧。以非极性aa与脂双分子层的非极性疏水区相互作用而结合在质膜上 。整合pro几乎都是完全穿过脂双层的蛋白,亲水部分暴露在膜的一侧或两侧表面; 疏水区同脂双分子层的疏水尾部相互作用;整合蛋白所含疏水aa的成分较高。跨膜蛋

白可分为单次跨膜,多次跨膜,多亚基跨膜等。 6、膜转动蛋白(membranetransportprotein):CM中具有转运功能的跨膜蛋白,可 分为载体蛋白和通道蛋白。

7、外周蛋白(peripheralprotein):又称附着蛋白,完全外露在脂双分子层的内外 两侧,主要是通过非共价分健附着在脂的极性头部,或整合蛋白亲水区的一侧间接与 膜结合。

8、细胞外基质(extracellularmatrix):由动物cell合成并分泌到胞外,分布于 细胞外空间的蛋白和多糖所构成的网状结构。 主要成分有 a.多糖:糖胺聚糖、蛋白聚糖; b.纤维蛋白:结构蛋白(胶原和弹性蛋白)、粘合蛋白(纤连蛋白和层粘连蛋白) 其中以胶原和蛋白聚糖为基本骨架在细胞表面形成纤维网状复合物,这种复合物 通过纤连蛋白或层粘蛋白以及与其他的连接分子直接与细胞表面受体连接;或附着到 受体上,由于受体多数是膜整合蛋白,并与细胞的骨架蛋白相连,所以细胞外基质通 过膜整合蛋白将细胞外与细胞内连成了一个整体。

9、整联蛋白(integrin)属于整合蛋白家族,是细胞外基质受体蛋白。整联pro为一 种跨膜的异质二聚体,它由两个非共价结合的跨膜亚基即α和β亚基所组成。Cell外 的球形头部露出脂双分子层,头部可同细胞外基质蛋白结全,而细胞内的尾部同肌动 蛋白相连,整联蛋白的两个亚基α和β链都是糖基化的,并通过非共价键结合在一起 ,整联蛋白同基质蛋白的结合,需要二价氧离子,如Ca2+,Mg2+等的参与,有些细胞 外基质可被多种整联蛋白识别。

整联蛋白作为跨膜接头在细胞外基质和细胞内肌动蛋白骨架之间起双向联络作用,将 细胞外基质同细胞内的骨架网络连成一个整体,这就是整联蛋白所起的细胞粘着作用 。整联蛋白还具有将细胞外信号的细胞内传递的作用。 10、细胞连接(cell junction):机体各种组织的细胞彼此按一定的方式相互接触

并形成了将相邻细胞连结起来的特殊结构,这种起连接作用的结构或装置称为细胞连 接。

11、紧密连接(tight junction):是相邻细胞间局部紧密结合,在连接处,两细胞

膜发生点状融合,形成与外界隔离的封闭带,由相邻细胞的跨膜连接糖蛋白组成对应 的封闭链,主要功能是封闭上皮cell间隙,防止胞外物质通过间隙进入组织,从而保 证组织内环境的稳定性,紧密连接分布于各种上皮细胞管腔面,细胞间隙的顶端。 12、锚定连接(anchoring junction):连接相邻细胞的骨架系统或将细胞与基质相 连形成一个坚挺有离的细胞整体。

a.与中间纤维相连的锚定连接主要包括桥粒和半桥粒。

b.与肌动蛋白纤维相连的锚定连接包括粘着带和粘着斑。构成锚定连接蛋白为细 胞内附着蛋白和跨膜连接的糖蛋白。

13、桥粒:连接相邻cell内的中间纤维将相邻cell连接在一起, 半桥粒:连接将细胞与细胞外基质连接在一起,

粘着带:位于某些上皮cell紧密连接的下方,相邻cell形成一个连续的带状结构 ,此中跨膜糖蛋白认为是钙粘素(参与连接的为钙粘蛋白),

粘着斑:是肌动蛋白纤维与细胞外基质之间的连接方式(参与连接的为整联蛋白) 14、G蛋白(信号蛋白):为可深性蛋白,全称为结全G调节蛋白,由α,β,γ三亚 基构成,位细胞表面受体与CAMPase之间。当cell表面受体与相应配体结合时,释放

信号例G蛋白激活,通过与GTP和GDP的结合,构象发生改变,并作用于CAMPase调节胞 内第二信使CAMB的水平,最终产生特定的细胞效应,作为一种调节蛋白或偶联蛋白, G蛋白又可分为刺激型G蛋白和抑制型G蛋白等多种类型,其效应器可不同。 15、细胞膜有何作用:(保护作用)

a.使细胞内外环境隔开,形成稳定的内环境;

b.控制着细胞内外物质的交换,细胞膜具有选择透性; c.膜上有许多酶,是细胞代谢进行的重要部位;

d.CM还是一种通讯系统,CM与神经传导,激素作用有关;

e.CM对能量转换,免疫防御,细胞癌变等方面起十分重要作用。

16、载体蛋白:为CM的脂质双分子层中分布的一类镶嵌蛋白,其肽链穿越脂双层,属 跨膜运输。

通道蛋白:为CM上的脂质双分子层中存在的一类能形成孔道供某些分子进出cell的特 殊蛋白质,也为跨膜蛋白,影响闸门开启的因素有——配体刺激,膜电位变化,离子 浓离变化。

17、SOS:离子型去垢剂,不仅使CM崩解,半破坏并使膜蛋白变性。 TritollX-100:温和性去垢剂:使CM溶解,不使蛋白变性。

18、通讯连接:a.间隙连接——CM间隙2-3nm,构成间隙连接的基本单位称连接子, 每个连接子由6个相同或相似的跨膜蛋白亚单位connexin环绕,中心形成一个直径约 为1.5nm的孔道,相邻CM上的两个连接子对接便形成一个间隙连接单位,因此又称一 缝隙连接或缝管连接。

b.胞间连丝——穿越CM,由相互连接的相邻细胞的CM,共同组成的管状结构,中央是 由内质网延伸形成的链管结构。

c.化学突触:存在于可兴奋细胞之间的细胞连接方式,它通过释放神经递质来传导神 经冲动。

19、cell表面粒着困子:

a.cell与cell连接:钙粘素、选择素、免疫球蛋白类血细胞整联蛋白。 b.cell与基质连接:整联蛋白、质膜白聚糖。

20、细胞外基质功能: a.对细胞形态和细胞活性的维持一起重要作用; b.帮助某些 细胞完成特有的功能; c.同一些生长因子和激素结合进行信号传导; d.某些特殊细 胞外基质为细胞分化所必需。

21、生物膜两个显著的特征:膜的不对称性和膜的流动性。 Chapter 5

1、细胞通讯(cell comrnunication):指一个cell发出的信息通过某种介质传递 到另一细胞,并使其产生相应的反应。细胞之间存在的通讯方式有: a.cell通过分 泌化学信号进行细胞间相互通讯;

b.cell间接触性依赖的通讯; c.能过cell间形成间隙连接使细胞质相互沟通 并交换小分子。

2、细胞分泌化学信号作用方式:内分泌;旁分泌;自分泌;通过化学突触传递神经信 号。

3、第一信使:反映cell外的化学信号物质,如激素、神经递质等,亲水性的第一信 使不能直接进入细胞发挥作用,而是通过诱导产生的第二信使去发挥特定的调控作用。 第二信使:指第一信使与膜受体结合后诱休使cell最先产生的信号物质,如CAMP,肌 醇磷脂等。

4、膜受体:指CM上分布的能识别化学信号的镶嵌蛋白质。具有很强的特异性,能选 择性地与胞外存在的信号分子结合,最终使cell内产生相应的化学反应或生物学效应 ,膜受体多为糖蛋白,在化学信号的传递,入胞作用,细胞识别等方面起重要作用。 5、信号转导(aignal eransduction)表面受体通过一定的机制将胞外信号转为胞内 信号,称信号转导。

6、运输ATPase:能够水解ATP,并利用水解释放出的能量驱动物质跨膜运输的运输蛋 白称ATPase。由于可进行逆浓梯度运输,故称泵,分四种类型: a.P型离子泵:Na+ -K+泵,Ca2+泵,H+泵。

b.V型泵: c.F型泵:又称H+-ATP酶。d.ABC型运输蛋白:

7、钙泵两种激活机制:a.一种是受激活的Ca2+-钙调蛋白(CAM)复合物的激活; b.一种是被蛋白激酶 c激活。

8、信号传递中的开关蛋白:指细胞内信号传递时作为分子开关的蛋白质,含有正、负

两种相辅相成的反馈机制,可分两类: a.开关蛋白的活性,由蛋白激酶使之磷酸化而开启,由蛋白磷酸E使之去磷酸化而关闭,许多开关蛋白即为蛋白激酶本身。 b.开关蛋白由GTP结合蛋白组成,结合GTP活化,结合GTP而失活。

11、细胞通讯:是指在多cell生物的细胞社会中,cell间或cell内通过高度精确和高 效地接收信息的通讯机制,并通过放大引起快速的cell生理反应,或者引起基因活动 ,尔后发生一系列的细胞生理活动来协调各组织活动,使之成为生命的统一整体对多 变的外界环境作出综合反应。基本过程:

a.信号分子的合成:内分泌细胞为主要来源。

b.信号分子从信号传导细胞释放到周围环境中,如protein的分泌。 c.信号分子向靶cell运输:通过血液循环system。 Cell信号传导:即信号的合成分泌传递

d.靶cell对信号分子的识别和检测,通过位于CM或cell内受体蛋白,识别和结合。 e.cell对胞外信号进行跨膜转导,产生胞内信号。

f.胞内信号作用效应分子,进行逐级放大,引起一系列生理变化。 信号转导:即信号的识别、转移转换

12、cell信号系统主路:cell接受外界信号,通过一整套特定的机制,将胞外信号转 导为胞内信号,最终调节特定G的表达,引起cell的应答反应。

13、cell的信号分子: a.亲脂性信号分子:甾类激素和甲状腺素; b.亲水性信号分子:神经递质,生长因子,局部化学递质和大多数激素。

14、受体:多为糖蛋白,两个功能区域,与配体结合的区域和产生效应的区域分别具

有结合特异性和效应特异性。 15、第一信使:细胞外信号分子; 第二信使:CAMP,CGMP,IP3,DG。

第三信使:Ca2+为磷脂酰肌酵信号通路的第三信使。

16、cell内受体:本质为激素激活的基因调控蛋白,具3个结构域,一是激素结合结

构域,二是DNA结构域,三是转录激活结构域。

17、明星分子:NO——血管内皮cell和神经cell中,L-Arg+NADPH L-瓜氨酸+NO→靶

细胞→①鸟苷酸环化酶GC激活→GFP→CGMP→介导protein磷酸化→发挥生物学功能。

②与靶蛋白结合,改变protein的构型。

18、离子通道偶联的受体:又称酮体门通道,或递质门离子通道——分电压门、配体

门、压力门。

19、G蛋白偶联的受体:细胞表面由单条多肽经7次跨膜形成的受体,N端在cell外,C

端在cell内。指配体—受体复各物与靶蛋白的作用要通过与G蛋白的偶联,在cell内

产生第二信使,从而将胞外信号跨膜传递到胞内影响cell的行为。由G蛋白偶联受体

介导细胞信号通路包括:

a.CAMP信号通路:由CM上的五种组分组成——激活型激素受体,Rs; 与GDP结合的活

化型调蛋白,Gs; 腺苷酸环化酶,c;与GDP结合的抑制型调节蛋白,Gi; 抑制型激

素受体,Ri。激素配体+Rs→Rs构象改变暴露出与Gs结合位点→与Gs结合→Gs2变化排

斥GDP结合GTP而活化→使三聚体Gs解离出α和βγ→暴露出α与腺苷酸环化酶结合位

点→与A环化E结合并使之活化→将ATP→CAMP→激活靶酶和开启基因表达→GTP水解,

α恢复构象与A环化酶解离→C的环化作用终止→α和βγ结合回复。 b.PIP2信号通路:胞外signal+膜受体→PIP2

IP3+DAG,IP3→内源钙→细胞溶质,胞内Ca2+浓度升高→启动Ca2+信号系统,

DAGCM上活化蛋白激酶PKC→DG/PKC信号传递pass way。

20、DG生成pass way:PIP2→IP3+DG;磷酸脂胆碱 DG(长期效应)。

21、DKC活化增强特殊G表达pass way: a.PKC激活一条PK的级联反应,导致G调控蛋

白磷酸化激活,进而增强G表达; b.PKC活化导致抑制蛋白的磷酸化,使cell质中

基因调控蛋白摆脱抑制状态释放出来,出入CN,刺激G转录。 22、CAMP信号通路效应:

a.激活靶酶:CAMP→蛋白激酶A→不同靶蛋白磷酸化→影响cell代谢和行为 b.开启G表达:CAMP→PKA→基因调控蛋白→G转录 Chapter 6

1、细胞基质(cytoplasmic matrix):存在于细胞质中,填充于N.M,ER,Golgic,C

等液泡系统与Mitochloroplast等膜状结构之间的连续性结构,主要含有与中间代谢

有关的糖4种酶类,与维持细胞形态和细胞内物质运输有关的细胞质骨架结构。 2、胞质深胶(cytosol):属细胞质的可流动部分,并且是膜结合cell器外的流动部

分。它含有多种蛋白和酶以及参与生化反应的因子,cytosol为protein合成的重要场

所,同时还参与多种生化反应。

3、cell内膜系统(cell endomembrane syslem):指细胞质内在形态结构,功能和

发生上具有相互联系的膜相结构的总称,由膜围绕的细胞器或细胞结构,主要包括

N.M,ER,Glogic,lysosome,胞内体和分泌泡等。 4、跨膜运输(across memirane transport):cytosol中合成的protein进内到

ER.Golgic,mito,chlo和过氧化物酶体通过一咱跨膜机制进行定位,需要膜上运输

protein的帮助。被运输的protein常为未折叠的状态。 5、小泡运输(transport by vecicles):protein从ER转运到Golgi,以及从Golgi

转送到深酶体分泌泡CM细胞外等是由小泡介导的,这种小泡称运输小泡transport

vesicles。内膜系统的protein定位,除了ER本身之外,其它膜结合细胞器的蛋白定

拉都是通过形成运输泡,将protein从一个区室转送到另一个区室。 6、微粒体(microsomes):指在cell匀浆和差速离心过程中获得的由破碎的内质网

自我融合形成的近球形的膜囊泡状结构。 7、内质网(ER):由封闭的膜系统及其围成的腔形成互相沟通的网状结构。

8、肌质网:心肌和骨骼肌中一种特殊ER,功能是参与肌肉收缩活动,SER在肌 cell

中形成的一种特异结构。 9、信号识别颗粒(SPR):是一种核糖核酸酸蛋白复合体,有三个功能部位——翻译

暂停结构域,信号肽识别引进结合位点,SRP受体蛋白结合位点,介导核糖体附着到

ER膜上。

10、停靠蛋白:DP即SRP在ER膜上的受体蛋白。 11、起始转移信号:

12、内含转移信号:又称内含信号肽 13、停止转移肽:又称停止转移信号

14、Golgi complex:由平行排列的扁平膜囊,大囊泡和小囊泡等等3种膜状结构组成

——有两个面,形成面和成熟面与cell的分泌功能有关,能够收集和排出内质网所合

成的物质,且参与与糖蛋白和粘多糖的合成。顺面网状结构、顺面膜囊、中国膜囊、

反面膜囊、反面网状结构

15、内质网滞留信号:内质网的功能和结构蛋白羧基端的一个同肽系列: Lys-Asp-Gly-Leu-Coo-,即KDEL信号序列,在Golyi膜上有担应受体,一旦进入

Golyi就与受体结合,形成回流水泡被运回ER。

16、M6P受体蛋白:为反面高尔基网上的膜整合蛋白,能够识别lysosome水解酶上的

M6P信号并与之结合,从而将lysosome的酶蛋白分选出来,后通过出芽的方式将该酶

蛋白装入分泌小泡。

17、细胞分泌cell secretion:animal and plant cell将在KER上合成而又非内质

网组成的protein和脂通过小泡运输的方式经过Golyi body的进一步加工和分选运送

到cell内相应结构,CM以及cell外的过程称为细胞分泌,分泌活动可分为两种——a.

分泌的物质主要供cell内使用

b.要通过与cell质膜的融合进入CM或运输到cell外

可作为加氧酶,利用分子氧催化核酮糖1,5二磷酸裂解成3-磷酸甘油和磷酸乙醇酸。

由于磷酸乙醇酸不能被卡尔文循环利用,所以是碳同化的废物。磷酸乙醇酸合成,不仅浪费能源和碳源, 而且磷酸乙醇酸的积累可能杀死植物本身,因为这种物质能够抑制丙糖磷酸异构酶(triose-phosphate isomerase)的活性,从而破坏了叶绿体基质中甘油醛-3-磷酸与二羟丙酮(dihydroxyacetone)的平衡。

Rubisco同氧的亲和力比与二氧化碳的亲和力低得多,所以RuBP的氧化反应要比羧化反应慢。可以推测,一般情况下这种氧化作用构不成威胁,但是当CO2的浓度很低而O2的浓度很高时,O2就要取代CO2作为Rubisco的底物。将叶或藻类细胞置于低比值的CO2/O2气体环境中,发现RuBP每发生2~3个羧化反应就要发生一次氧化反应,严重影响光合作用的效率。

生活在地球的某些环境下的植物往往会受到这种影响。如生活在因强烈光照导致炎热和干旱地区的植物叶绿体中容易发生RuBP的氧化作用,因为这种环境会使叶绿体基质中CO2/O2的比值降低。虽然温度的升高,CO2、O2的溶解性都会降低,但CO2的溶解性下降更快,其结果导致基质中CO2/O2比值的降低。另外,生活在干旱地区的植物,为了防止水分蒸发,会关闭气孔,CO2就不能进入叶中,没有稳定的CO2供给同化作用,叶细胞中的CO2的浓度进一步下降。但是,叶绿体中水的光解继续进行,由于释放的O2不能扩散出叶,使得细胞内O2的浓度不断增加,进而严重影响光合作用。因此这些植物通过光呼吸来提高CO2的浓度,从而提高光合作用的效率。

16. 什么是CAM植物?它是如何提高CO2固定效率的?

17. 请列表比较线粒体和叶绿体的膜和区室在结构组成和功能上的差异。

答: 线粒体和叶绿体的膜和区室在结构组成和功能上都有所不同,如线粒体内膜除了作为线粒体界膜之外,主要功能是电子传递和合成ATP。从结构上看,线粒体内膜向内折叠成嵴, ATP合酶位于嵴上。而叶绿体的内膜只是稍向内折形成小管或小泡结构,且表面光滑。叶绿体内膜是脂合成的场所,是叶绿体的界膜。线粒体、叶绿体膜和区室的主要结构和功能特征列于表8Q-1。

表8Q-1 线粒体与叶绿体膜和区室的结构域功能比较 膜或区室 线粒体 叶绿体 外膜 标志酶:单胺氧化酶 厚5.5nm, 通透性强,有孔蛋白 厚7nm, 通透性强,有孔蛋白 内膜 标志酶:细胞色素氧化酶 蛋白质:脂 = 0.7 蛋白质:脂 = 0.9 通透性差 通透性差

向内折成嵴 稍向内折成管状或小泡状 内表面有ATP合酶颗粒 内表面光滑

有各种类型的运输蛋白 仅仅是运输交换蛋白 是电子传递和氧化磷酸化部位 是脂合成的部位 类囊体膜 无 光反应的部位

外表面有CF1-ATP,光合磷酸化部位 膜间隙 标志酶: 腺苷酸激酶 建立H+质子梯度

基质 含有各种酶系、mtDNA、核糖体 含有一些酶、ctDNA、核糖体、 tRNA和蛋白质表达因子 tRNA和蛋白质表达因子 TCA循环场所 卡尔文循环场所 类囊体腔 无 建立H+质子梯度 水的光解

18. 请列表比较氧化磷酸化与光合磷酸化。 答: 二者的差异列表比较如下:

表8Q-2 氧化磷酸化与光合磷酸化的比较 氧化磷酸化 光合磷酸化 细胞器 线粒体 叶绿体 定位 线粒体内膜 类囊体膜 电子传递系统 呼吸链 PSI、PSII

NADH或FADH H2O的光解 电子供体

电子终受体 1/2 O2 NADP+

1 对 传递电子对 1 对

造成的H+质子浓度差 膜间隙(高)/基质(低) 类囊体腔(高)/基质(低)

3次 2次 电子跨膜次数

F1-F0 ?CATP酶 CF1-CF0 -ATP酶 偶联因子

机理 化学渗透 化学渗透

偶联因子定位取向 向内朝向基质 向外朝向基质 H+质子流向 向外流向膜间隙 向内流向类囊体腔 产生ATP所需的H+ 2个H+ 3个H+

第九章 内膜系统与蛋白质分选和膜运输

1. 如何理解膜结合细胞器在细胞内是按功能、分层次分布的?

答: 从功能上看, 细胞内膜结合细胞器的分布是功能越重要越靠近中央; 从层次看, 上游的靠内, 下游的靠外。如细胞核位于细胞的中央,它是细胞中最重要的细胞器,有两层膜结构。细胞核的外膜与内质网的膜是联系在一起的, 细胞核的外膜是粗面内质网的一部分。粗面内质网的功能是参与蛋白质合成, 其作用仅次于细胞核, 所以内质网位于细胞核的外侧。高尔基体在内质网的外侧,接受来自内质网的蛋白质和脂肪,然后对它们进行修饰和分选,它所完成的是内质网的下游工作。溶酶体是含有水解酶的囊泡,它是由高尔基体分泌而来。内体是由内吞作用产生的具有分选作用的细胞器,它能向溶酶体传递从细胞外摄取的物质, 这种细胞器一般位于细胞质的外侧。另外还有线粒体、过氧化物酶体等分布在细胞的不同部位。如果是植物细胞还有叶绿体和中央大液泡, 它们是按功能定位。 2. 内膜系统的动态特性是如何形成的?

答: 造成内膜系统的动态特性主要是由细胞中三种不同的生化活动引起的: ①蛋白质和脂的合成活动: 在动物细胞中主要涉及分泌性蛋白的合成和脂的合成和加工。脂的合成在光面内质网,而分泌蛋白的合成起始于粗面内质网,完成于高尔基体。②分泌活动: ③内吞活动(endocytosis pathway),是分泌的相反过程, 细胞将细胞外的物质吞进内体和溶酶体。 3. 请说明内膜系统的形成对于细胞的生命活动具有哪些重要的意义?

答: 至少有六方面的意义: ① 首先是内膜系统中各细胞器膜结构的合成和装配是统一进行的,这不仅提高了合成的效率,更重要的是保证了膜结构的一致性,特别是保证了膜蛋白在这些膜结构中方向的一致性。② 内膜系统在细胞内形成了一些特定的功能区域和微环境,如酶系统的隔离与衔接, 细胞内不同区域形成pH值差异, 离子浓度的维持, 扩散屏障和膜电位的建立等等,以便在蛋白质、脂类、糖类的合成代谢、加工修饰、浓缩过程中完成其特定的功能。③ 内膜系统通过小泡分泌的方式完成膜的流动和特定功能蛋白的定向运输,这不仅保证了内膜系统中各细胞器的膜结构的更新,更重要的是保证了一些具有杀伤性的酶类在运输过程中的安全,并能准确迅速到达作用部位。④ 细胞内的许多酶反应是在膜上进行的,内膜系统的形成,使这些酶反应互不干扰。⑤ 扩大了表面积,提高了表面积与体积的比值。⑥ 区室的形成,相对提高了重要分子的浓度,提高了反应效率。

4. 为什么说蛋白质的合成和分选运输是细胞中最重要的生命活动之一?

答: 这是因为在细胞生命周期的各个阶段都需要不断补充和更新蛋白质(或酶); 细胞中的线粒体、叶绿体和过氧化物酶体等细胞器都是通过已存在细胞器的分裂增殖的,新形成的细胞器的生长需要大量的蛋白质。细胞本身也是通过分裂增殖的,新形成的细胞为了增大体积,需要不断地补充蛋白。即使是不进行分裂的细胞,由于细胞内蛋白质的寿命限制和降解,也需要不断地补充蛋白质,取代细胞器中丧失功能的蛋白,所以蛋白质的合成和分选运输是细胞中最重要的生命活动之一。

5. 在蛋白质的合成与分泌的研究中分别使用了同位素示踪技术、分离技术和突变体研究技术, 说明这些技术的研究结果各说明了什么问题?

答: 同位素示踪技术确定了分泌的路线, 从内质网开始经高尔基体运向细胞外;分离技术确定了参与合成和分泌的主要细胞器的作用:内质网是参与蛋白质合成和转运的, 高尔基体不仅是中转站, 而且具有加工的作用。突变体研究揭示了分泌活动的相关基因及分泌的机理。 6. 光面内质网是如何参与肝细胞维持血液中葡萄糖水平的恒定?

答: 肝细胞的一个重要功能是维持血液中葡萄糖水平的恒定, 这一功能与葡萄糖-6-磷酸酶的作用密切相关。肝细胞是以糖原颗粒的形式储存葡萄糖,肝细胞光面内质网的胞质溶胶面附着有糖原颗粒,当肌体需要葡萄糖时,糖原即被降解。肝细胞中的糖原降解是受激素控制的,激素作为信号分子激发cAMP的浓度升高,然后由cAMP激活蛋白激酶A,蛋白激酶A能够激活将糖原水解生成1-磷酸葡萄糖的酶。由于1-磷酸葡萄糖不能够通过扩散穿过细胞质膜进入血液,需要先转变成葡萄糖-6-磷酸,然后由光面内质网中的葡萄糖-6-磷酸酶将葡萄糖-6- 磷酸水解生成葡萄糖和无机磷,释放游离的葡萄糖进入血液, 维持血液中葡萄糖水平的恒定。

7. 什么是肝细胞解毒? 肝细胞解毒的机理是什么?

答: 肝细胞中的光面内质网能够对外来的有毒物质,如农药、毒素和污染物通过氧化、还原和水解,使有毒物质由脂溶性转变成水溶性而被排出体外, 此过程称为肝细胞解毒作用。解毒作用需要氧和NADH, 而且每氧化一分子底物,要消耗一分子的氧,进而将NADPH转变成NADP+。由于这种反应的一个氧原子出现在产物中,其他则存在于水分子中,将催化这种类型氧化作用

酶称为混合功能的氧化酶。混合功能的氧化酶系统类似一条呼吸链,由几个组分组成,核心成员是细胞色素P-450,它是光面内质网上的一类含铁的膜整合蛋白,因在450nm波长处具有最高吸收值,因此而得名。细胞色素P-450是肝细胞光面内质网的主要膜蛋白,约占光面内质网膜蛋白的20%, 占细胞总蛋白的2~3%。细胞色素P-450参与有毒物质以及类固醇和脂肪酸的羟基化。羟基化涉及四个基本反应∶被氧化的物质同细胞色素P-450结合→细胞色素P-450中的铁原子被NADPH还原→氧同细胞色素P-450结合→底物结合一个氧原子被氧化,另一个氧原子用于形成水。被氧化的底物由于带上羟基,增强水溶性,容易被分泌排出。 8. 为什么说多聚核糖体是研究内质网帮助蛋白质运输的好材料?

答:这是因为当一条mRNA上结合有多个核糖体进行蛋白质翻译时,最先结合上的核糖体,其合成的多肽最长,最尾端的核糖体只是刚刚开始进行翻译(图Q9-1)。如果翻译的是分泌蛋白,最先结合上的核糖体合成的多肽,其N-端可能没有了信号序列,因为在内质网中被切除了。从骨髓瘤分离多聚核糖体的体外翻译实验证明了这一推测。用去垢剂处理从骨髓瘤分离的多聚核糖体,使之与内质网膜分离后,继续在无细胞体系(不含RER小泡)中进行翻译,发现:短时间温育,即可得到成熟的分泌蛋白(无信号序列),而长时间的温育,得到的产物N-端有信号序列,这一结果说明由于mRNA中多聚核糖体合成蛋白质的不同步,位于mRNA3'端的核糖体合成的蛋白质在分离前不仅进入了内质网,而且在内质网的腔中被切除了信号序列。越靠近mRNA5'端的核糖体合成的蛋白质越短,所以在体外经较长时间的翻译得到的是含有信号序列的前蛋白,因为没有了内质网,信号序列不能被切除。 图9Q-1 多聚核糖体体外翻译实验示意图 9. 补充修改后的信号假说的要点是什么?

答: 新的信号假说的要点如下: ①ER转运蛋白质合成的起始。通过ER转运的蛋白合成仍然起始于胞质溶胶中的游离核糖体。核糖体是蛋白质合成的基本装置,它并不决定合成蛋白质的去向,合成的蛋白质何去何从,是由mRNA决定的,也就是说是由密码决定的。②信号序列与SRP结合。SRP的信号识别位点识别新生肽的信号序列并与之结合; 同时,SRP上的翻译暂停结构域同核糖体的A位点作用, 暂时停止核糖体的蛋白质合成。③核糖体附着到内质网上。结合有信号序列的SRP通过它的第三个结合位点与内质网膜中受体(停靠蛋白)结合, 将核糖体附着到内质网的蛋白质转运通道(protein-translocating channel) 。现已了解,SRP受体是一种G蛋白,它对分泌蛋白的转运具有重要的调节作用。受体蛋白与GTP结合,表示是活性状态,能够与SRP结合,如果结合的是GDP 是非活性状态,不能与SRP结合。④ SRP释放与蛋白质转运通道的打开。 当SRP-信号序列-核糖体-mRNA复合物锚定到内质网膜后,SRP受体将其结合的GTP水解同时将SRP释放出来,此时蛋白转运通道打开,核糖体与通道结合,新生的肽插进通道。释放的SRP又回到胞质溶胶中循环使用。内质网膜蛋白质转运通道是一个多蛋白的复合物,详细的作用尚不清楚。⑤信号序列与通道中受体结合。蛋白质继续合成,随着SRP的释放,核糖体上的多肽插入到内质网的蛋白通道之后,信号序列与通道中的受体(或称信号结合蛋白)结合,蛋白质的合成重新开始,并向内质网腔转运,在此过程不需要能量驱动。

⑥信号肽酶切除信号序列。 当转运完成之后,若转运多肽的信号序列是可切割的序列则被内质网膜中信号肽酶(signal peptidase)所切割,释放出可溶性的成熟蛋白,切下的信号序列将被降解。

10. 根据信号假说, 膜蛋白(单次和多次跨膜)是怎样形成的?

新生肽上是否含有停止转移信号决定了新生肽答: 主要是由停止转移信号及其数量决定的。

N-末端的信号序列和是否全部穿过内质网膜,成为内质网腔中的可溶性蛋白还是成为膜蛋白。

内含信号序列都可作为起始转移信号,但N-末端的信号序列是可切除的,而内含信号序列是不可切除的。膜蛋白的跨膜次数是由其内含信号序列和停止转移信号序列的数目决定的, 这些信号序列都是多肽链中的疏水氨基酸区, 因此,根据多肽链中疏水氨基酸区的数目和位置可以预测其穿膜情况。另外, 由于膜蛋白总是从胞质溶胶穿入内质网膜, 并且总是保持信号序列中含正电荷多的氨基酸一端朝向胞质溶胶面, 因而相同蛋白质在内质网中的取向也必然相同。结果造成内质网膜中蛋白质取向的不对称性,并由此决定了该蛋白在其它膜结合细胞器的膜结构中的方向。

11. 为什么说高尔基体是一种极性细胞器?

答: 高尔基体的极性有两层含义: 一是结构上的极性,二是功能上的机型极性。结构上的极性:高尔基体可分为几个不同的功能区室。①靠近内质网的一面是由一些管状囊泡形成的网络结构,通常将这一面称为顺面(cis face), 或称形成面(forming face)。由于顺面是网络结构,所以又称顺面高尔基网络(cis Golgi network,CGN)。从功能上看,CGM被认为是初级分选站(primarily sorting station),负责对从ER转运来的蛋白质进行鉴别,决定哪些需要退回,哪些可以进入下一站。②高尔基体中间膜囊(medial Golgi) 由扁平囊和管道组成,形成不同的区室, 但功能上是连续的、完整的膜体系。多数糖基修饰、糖脂的形成、以及与高尔基体有关的多糖的合成都发生在中间膜囊中。③反面高尔基网络 (trans Golgi network,TGN), 是高尔基复合体最外面一侧的管状和小泡状物质组成的网络结构,它是高尔基复合体的组成部分,并且是最后的区室。

蛋白质的运输信号在此被特异的受体接受,进行分拣,集中,形成不同的分泌小泡,被运送到不同的地点。因此, 它的主要功能是参与蛋白质的分类与包装,并输出高尔基体。某些“晚期”蛋白质的分类与包装也发生在TGN中。功能上的极性:高尔基体虽然是由膜囊构成的复合体,但是不同的膜囊有不同的功能,执行功能时又是“流水式”操作,上一道工序完成了,才能进行下一道工序,这就是高尔基体的极性。

12. 为什么偶尔会出现高尔基体蛋白向内质网运输? 有什么意义?

答: 从理论上讲, 除了内质网结构和功能蛋白质外, 其他由内质网合成的蛋白质都是通过小泡转运到高尔基体的顺面, 小泡与顺面高尔基体网络融合之后, 转运的蛋白质进入高尔基体腔, 这是内质网与高尔基体间的主流运输。但偶尔也有从高尔基体各个部位形成的小泡沿微管回流到内质网。造成高尔基体蛋白向内质网运输的原因有两种可能:一是ER在进行蛋白质运输时发生包装错误,将ER的结构和功能蛋白运输到高尔基体, 被高尔基体的监控蛋白发现并将“走私”蛋白遣返。第二种情况是在不良环境下细胞作出的应激反应。作为内质网的结构和功能蛋白在其羧基端都有一个内质网滞留信号(ER retention signal):Lys-Asp-Glu-Leu-COO-,即KDEL信号序列。如Bip就带有KDEL信号, 它是内质网中的分子伴侣,如果从Bip上除去这种信号, Bip蛋白就会分泌出来; 如果将KDEL信号加到别的分泌蛋白上, 这种蛋白也就变成了滞留在内质网中的蛋白质。KDEL信号在高尔基复合体各个部分的膜上都有相应的受体。如果ER滞留蛋白质在出芽时被错误地包进分泌泡而离开了ER, 高尔基复合体膜上的这种信号受体蛋白就会与逃出的ER蛋白结合,并形成小泡, 将这些ER蛋白\押送\回到ER。因此这种回流运输对于保证内质网的正常功能是十分重要的。

13. 溶酶体中含有的都是水解酶类, 那么内溶酶体破裂会使细胞裂解吗?

答: 如果是少量的溶酶体酶泄漏到胞质溶胶中, 并不会引起细胞损伤,其主要原因是胞质溶胶中的pH值为7.0左右,在这种环境下, 溶酶体的酶基本没有活性。但是, 如果的溶酶体大量破裂, 对细胞就有危害了。

14. 自噬作用对细胞的生命活动有什么意义?

答: 自噬作用的意义是多方面的包括: 酶系统的更新:处于不同的细胞周期、不同分化阶段和不同生理状态下的细胞, 进行着不同的生理生化反应, 需要不同的酶系统, 细胞生理状态的变化要依靠酶系统的变化来实现。对于细胞质中某些暂时不需要的酶系统或代谢产物, 需要通过自噬作用进行酶系统的更新。老旧细胞器的清除:细胞中的生物大分子和细胞器都有一定的寿命, 为了保证细胞正常的代谢活动, 必须不断地清除衰老的细胞器和生物大分子。很多生物大分子的半衰期只有几小时或几天。肝细胞中线粒体的寿命平均约10天左右。参与细胞发育发育:自噬作用在不同类型细胞中发生的频率不同。在某些发育过程中的细胞中,自噬作用特别强, 因为这些细胞要不断地进行细胞器的更新, 或消除。如红细胞发育成熟后, 所有的细胞器都要通过自噬作用被清除。应激反应:另外在细胞饥饿条件下, 自噬作用也特别强, 此时的吞噬作用主要是为细胞提供能量, 维持细胞的生命活动。 15. 溶酶体酶蛋白M6P标记是怎样形成的?

答: 所谓溶酶体酶蛋白的M6P标记, 就是溶酶体酶蛋白合成之后经糖基化和磷酸化, 带上了磷酸化的甘露糖。它的形成涉及内质网和顺面高尔基体。溶酶体的酶在膜旁核糖体上合成,通过信号肽的引导进入粗面内质网,在粗面内质网进行N-连接糖基化。在此过程中,溶酶体酶蛋白先带上3个葡萄糖、9个甘露糖和2个N-乙酰葡萄糖胺,切除三分子葡萄糖和一分子甘露糖后转运到高尔基体;在高尔基体顺面网络对N连接的糖链进行磷酸化修饰,带上6-磷酸甘露糖的标记, 甘露糖的磷酸化比较复杂。将磷酸基团添加到溶酶体酶的甘露糖的第六位碳上的反应是由两种酶催化的,一种酶是N-乙酰葡萄糖胺磷酸转移酶(N-acetyglucosamine phosphotransferase),它有两个功能位点,一个是识别位点,能够同溶酶体酶进行特异性地结合。另一个是催化位点。另一种酶是N-乙酰葡萄糖苷酶, 功能是释放N-乙酰葡萄糖胺。识别位点同溶酶体酶的识别和结合是构型特异性的, 即识别信号斑。信号斑是溶酶体酶蛋白多肽形成的一个特殊的三维结构, 它是由三段信号序列构成的, 可被磷酸转移酶特异性识别。反应中磷酸基的供体是UDP N-乙酰葡萄糖胺(N-acetyglucosamine,GlcNAc), 甘露糖残基磷酸化的位点是第六位碳原子。每个溶酶体酶蛋白上有8个甘露糖残基, 至少有一个甘露糖残基被磷酸化。溶酶体酶蛋白的甘露糖一旦被磷酸化, 就带上了甘露糖6-磷酸标记。 16. 溶酶体的酶是如何经M6P分选途径进行分选的?

答: 溶酶体形成的M6P分选途径的主要过程是: 具有M6P标记的溶酶体酶在反面高尔基体网络与受体结合后,在网格蛋白帮助下形成具有网格蛋白外被的溶酶体酶分泌小泡, 网格蛋白解聚后的溶酶体酶分泌小泡与一种具有分选作用的细胞器�次级内体融合, 由于次级内体内部的pH≈5.5, 融合后的内体中的pH低于6, 所以与M6P受体结合的溶酶体酶与受体脱离, 释放到内体中,接着,由次级内体中的磷酸酶使溶酶体酶脱磷酸,防止溶酶体酶与M6P受体重新结合。融合后的次级内体可以通过出芽形成两种类型的小泡, 一种含有溶酶体酶蛋白但不含M6P受体,这种小泡可以同溶酶体融合,完成最终将溶酶体酶传递给溶酶体的过程。另一种小泡只含有M6P受体,不含有酶, 它们主要是同反面高尔基体膜融合,偶尔这种小泡也会同

质膜融合完成M6P的再循环。 另一方面, 偶尔分泌到细胞外的溶酶体酶与质膜中M6P受体蛋白结合, 然后通过内吞作用被包装到初级内体中, 同次级内体融合后, 通过与来自反面高尔基体的溶酶体酶运输小泡相同的方式被传递给溶酶体。溶酶体酶的M6P分选途径有几个主要的特点:①M6P作为分选信号;②包埋在高尔基体中的受体能够被网格蛋白包装成分泌小泡;③ 出芽形成的溶酶体酶的运输小泡只同酸性的次级内体融合;④ 通过次级内体的分选作用使受体再循环。M6P分选途径是通过对一类遗传病: 称为溶酶体贮积症(lysosomal storage diseases)的研究发现的。此类遗传病是由于溶酶体中缺少一种或几种酶所致。 17. 如何根据溶酶体贮积症研究M6P分选途径?

答: 溶酶体贮积症是一种遗传病, 是由于溶酶体中缺少一种或几种酶所致。这种病人不能消化糖脂和一些原本由溶酶体酶消化的细胞外的成份, 使这些物质作为大的包涵体积累在溶酶体中。 I-细胞病(I-cell disease)是一种特别严重的溶酶体贮积症, 这种病人的溶酶体中缺少多种酶。通过比较I-细胞病人和正常人的溶酶体酶的差异发现M6P是溶酶体酶的分选信号, 病人细胞中缺少GlcNAc 磷酸转移酶, 不能使溶酶体酶带上甘露糖6-磷酸标记, 缺少M6P信号的溶酶体酶不能进入溶酶体, 而被分泌到细胞外。从I-细胞病人中分离成纤维细胞培养在含有M6P溶酶体酶的培养基中,发现细胞中溶酶体的量几乎达到正常人的水平, 这一发现说明细胞质膜含有M6P受体, 并且能够通过内吞作用将培养液中溶酶体的酶转运到细胞内。因为添加的溶酶体酶开始是在培养基中, 后来进入了细胞内的溶酶体, 只能用质膜的M6P受体转运来解释。

18. 请举例说明溶酶体酶进入溶酶体的非M6P途径的可能方式。

答:溶酶体酶进入溶酶体的非M6P途径可两种可能方式:一种是作为膜蛋白,合成时就插在膜上,; 另一种可能就是作为前体合成并结合在膜上, 进入溶酶体膜后水解释放到溶酶体腔中。如β-葡糖脑苷脂酶(β-glucocerebrosidedase), 此酶作为前体合成并结合在膜上,但是成熟后仍然结合在溶酶体的膜上。酸性磷酸酶在合成时是以前体形式被合成的并且作为ER的整合蛋白结合在ER的膜中。这种膜结合的前体酶通过高尔基体被运入溶酶体, 最后通过切割作为成熟的酸性磷酸酶被释放到溶酶体的腔中。指导膜结合蛋白从ER进入溶酶体的寻靶信号是一段特殊的氨基酸序列,这段序列位于跨膜蛋白的细胞质结构域。如果将酸性磷酸酶的细胞质结构域中的一个酪氨酸突变后, 这种酶的前体就只能结合在ER的膜而不能进入溶酶体中。在其他的溶酶体酶中也发现类似的情况,说明酪氨酸是溶酶体酶寻靶信号的组成部分。 19. 极性细胞中的膜蛋白通过什么方式进行选择性运输的?

答: 在极性细胞中, 如上皮细胞, 细胞膜分成顶端膜和基底外侧膜, 两部分细胞膜含有不同的膜蛋白和膜脂, 糖脂和糖蛋白只存在于顶部细胞膜中。在这种有极性的细胞中, 细胞质膜蛋白的分泌具有选择性, 主要是通过反面反面高尔基网络进行选择性包装, 将不同部位膜蛋白包装到不同的小泡, 然后运送到不同的部位。通过病毒感染实验和基因重组实验,证明极性膜蛋白的定位信号在膜蛋白中。当用流感病毒感染MDCK表皮细胞时, 子代病毒从顶部质膜出芽释放出来; 但是若用VSV病毒感染MDCK细胞时, 子代病毒是通过基底侧质膜出芽。出芽地点的不同是由于病毒外壳蛋白成熟时被运输的地点不同。流感病毒的HA糖蛋白合成后从高尔基体运送到顶部质膜, 而VSV糖蛋白(G蛋白)则从高尔基体运送到基底侧质膜。利用重组DNA技术, 将编码HA的基因导入未感染的细胞, 发现所表达的HA都定位在顶部质膜, 这表明定位信号位于HA糖蛋白上。极性细胞中可通过转胞吞(transcytosis)作用进行膜蛋白的选择性运输。如在肝细胞中, 合成的基底侧质膜蛋白与顶部质膜蛋白先是在一起被运送到基底侧质膜, 然后通过内吞作用将这两种类型的蛋白包装到同一种小泡, 通过分选作用, 将内吞泡中基底侧质膜的蛋白质分选出来,再将它运回到基底侧的质膜循环使用。而携带顶部质膜蛋白的小泡则跨过细胞质膜与顶部质膜融合, 这种过程称为转胞吞作用。 20. 什么是受体介导的内吞作用?有什么特点? 基本过程怎样?

答: 是一种特殊类型的内吞作用,主要是用于摄取特殊的生物大分子。被吞入的物质首先同细胞质膜的受体蛋白结合, 同受体结合的物质称为配体(ligand)。配体可分为四大类:Ⅰ.营养物, 如转铁蛋白、低密度脂蛋白(LDL)等; Ⅱ.有害物质, 如以葡萄糖和甘露糖为末端的糖蛋白; Ⅲ.免疫物质, 如免疫球蛋白、抗原等; Ⅳ.信号物质, 如胰岛素等多种肽类激素等。受体介导的内吞作用有两个主要特点: ①配体与受体的结合是特异的, 具有选择性; ②要形成特殊包被的内吞泡。大致分为四个基本过程∶①配体与膜受体结合形成一个小窝(pit); ② 小窝逐渐向内凹陷.然后同质膜脱离形成一个被膜小泡;③ 被膜小泡的外被很快解聚, 形成无被小泡, 即初级内体;④ 初级内体与溶酶体融合,吞噬的物质被溶酶体的酶水解。 21. 受体介导的内吞中, 内吞泡中的配体、受体和膜成分的去向如何?

答:在受体介导的内吞作用中,随内吞泡进入细胞内的物质可分为三大类∶配体(猎物)、受体和膜组分, 它们有着不同的去向: 在受体介导的内吞中,配体基本被降解, 少数可被利用。大多数受体能够再利用, 少数受体被降解。通常受体有四种可能的去向: ① 受体内吞之后,大多数受体可形成载体小泡重新运回到原来的质膜上再利用,这些受体主要是通过次级内体的分拣作用重新回到细胞质膜上(如M6P受体、LDL受体)。②受体和配体一起由载体小泡运回到原

CaM-Kinase)的激活与作用。

答: CaM-蛋白激酶,即为Ca2+ -钙调蛋白依赖性的蛋白激酶(Ca2+ /calmodulin-dependent protein kinase, CaM-Kinase)。该酶是一个大家族,可使靶蛋白中的丝氨酸和苏氨酸磷酸化。当CaM-蛋白激酶与Ca2+ -钙调蛋白复合物结合时成为活性状态,可使一些特异的靶蛋白磷酸化,进而影响细胞的生命活动。研究得较为清楚的是CaM-蛋白激酶II, 它的主要作用是参与记忆功能。该酶是由12个亚基组成的复合物, 有4种同源亚单位(α、β、γ、δ),在不同的细胞中表达的情况不一样,α亚基只是在脑细胞中表达。在未与Ca2+ /钙调蛋白结合时, 此酶没有活性, 当同Ca2+ /钙调蛋白结合成复合物后改变构象,表现激酶的活性。该酶可通过两种方式延长本身的活性状态,直到Ca2+ 水平下降: ①同Ca2+ /钙调蛋白结合后,一直保持结合状态; ②把酶转变成Ca2+ 非依赖型, 这样, 即使同Ca2+/钙调蛋白脱离,仍具有活性。 11. Ca2+在植物叶保卫细胞关闭中起什么作用?

答: 植物叶的气孔是水份蒸发的主要部位,为了避免脱水,孔径的大小要受严格控制。当保卫细胞(guard cells)中膨压(turgor pressure)降低时,孔径缩小,而保卫细胞中的膨压降低主要是离子浓度降低而引起。不利条件(如高温、低湿)可刺激脱落酸的释放,导致保卫细胞质膜中Ca2+通道打开。Ca2+进入胞质溶胶触发细胞内膜结合细胞器中储备的Ca2+释放,提高了胞质溶胶中Ca2+浓度。胞质溶胶中的高Ca2+浓度导致质膜的K+输入通道的关闭,并打开K+输出通道。这些变化的结果是K+过度外流,从而使细胞的膨压下降, 胞质溶胶中的离子浓度降低,水份会丧失,此时立即关闭气孔。由此看来,Ca2+在植物叶保卫细胞关闭中起调节作用。 12. 细胞如何解除IP3的信号作用?

通过两种方式:①IP3被水解,即IP3在5'-磷酸酶的作用下,水解为答: 主要是改变IP3的结构,

I(1,4)P2, 并且进一步水解成肌醇。5'磷酸酶是一种膜结合的酶。②在胞浆的肌醇磷酸脂3-激酶的作用下,IP3被ATP磷酸化生成肌醇-1,3,4,5-四磷酸(inositol-1,3,4,5-tetraphosphate, IP4),然后被水解成无活性的肌醇-1,3,4-三磷酸(inositol-1,3,4-trisphosphate)从而解除IP3的作用。 13. 线粒体膜上也有Ca2+转运蛋白, 在Ca2+信号的解除中有作用吗?

答: 虽然线粒体也是细胞的Ca2+库,线粒体膜上也有Ca2+转运蛋白并能将细胞质中的Ca2+转运到线粒体基质。但是,线粒体Ca2+运输蛋白与Ca2+的亲和力很低,常在5~10μmol/L时才能显示出对Ca2+的运输能力,所以在终止细胞中Ca2+的信号作用方面,线粒体只是起辅助作用, 因为只有在细胞内的Ca2+浓度很高时,线粒体膜的Ca2+转运蛋白才起作用。 4. 受体酪氨酸激酶是如何被激活的?

答: 受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子同细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞进行综合性的应答(如细胞增殖)。

15. 如何理解在受体酪氨酸激酶信号转导途径中IRSs、SH结构域的作用?

答: 从机制上看,受体酪氨酸激酶信号转导途径对信号的转导是通过磷酸化的酪氨酸与SH2

IRSs通过磷酸化的酪氨酸与效应物的SH2或SH3相互作用,或SH3的相互作用与结合实现的。

将效应物激活。虽然SH2都能同磷酸化的酪氨酸结合,并且不同的SH2结构域在结构上非常相似,但SH2同磷酸化的酪氨酸的结合还是有一定的特异性,不同的SH2能够识别特异区域

SH2结构域的磷酸化酪氨酸,这种选择性与C-末端1~3位的酪氨酸的磷酸化的关系特别大。

SH2能否与磷酸化的酪氨酸结合,有时受SH2蛋白内部酪氨酸磷酸化的控制。在这种情况下,

蛋白内部磷酸化左右了SH2的行为,对信号转导产生极大的影响。

磷脂酰肌醇-3-羟基激酶[PI(3)K]]是胰岛素受体信号转导途径中能够与磷酸化的IRS1结合的含有SH2的效应物,该酶催化磷酸基团添加到磷脂肌醇(PI)糖环的3'羟基上,生成两个产物:PI(3,4)P2和PI(3,4,5)P3,这两种产物都参与磷脂肌醇的信号转导。在胰岛素信号转导途径中,PI(3)K能够与不同的靶蛋白结合,并将靶蛋白激活,引起不同的反应:①帮助葡萄糖胺跨膜运输;②增强与胰岛素相关蛋白的合成;③刺激糖原的合成,将葡萄糖胺转变为糖原。 16. 鸟苷交换因子和GTP酶激活蛋白对Ras蛋白的活性有什么影响?

答: Ras的活性受两个主要蛋白的控制,一个是鸟苷交换因子(guanine nucleotide exchange factor, GEF),它的作用是促使GDP从Ras蛋白上释放出来,取而代之的是GTP,从而将Ras激活,GEF的活性受生长因子及其受体的影响。另一个控制Ras蛋白活性的是GTP酶激活蛋

GAP),白(GTPase activating protein,存在于正常细胞中,主要作用是激活Ras蛋白的GTP酶,

将结合在Ras蛋白上的 GTP水解成GDP,成为失活型的 Ras蛋白―GDP。所以在正常情况下,Ras蛋白基本上都与 GDP结合在一起,定位在细胞质膜内表面上。 17. EGF是怎样通过Ras进行信号级联放大的?

答: EGF与相应的受体结合导致受体二聚化,并引起细胞质结构域的酪氨酸自我磷酸化。磷酸酪氨酸作为Grb2蛋白的SH2结构域的结合位点同Grb2蛋白结合。Grb2通过两个SH3结构域与Sos蛋白结合并将Sos激活。激活的Sos同结合在质膜中的非活性状态的 Ras作用,促使Ras蛋白结合的GDP释放,结合上GTP。在此过程中, Grb2蛋白起连接蛋白的作用,将激活的受体与Ras连接起来。Ras蛋白激活后能够与Raf蛋白结合。Raf蛋白是一种丝氨酸/苏氨酸蛋白激酶,又称为MAPKKK(MAP kinase kinase kinase)。Raf能够磷酸化MEK蛋白激酶(MEK又称为MAPKK),MEK则磷酸化MAPK(促分裂原活化蛋白激酶)。激活后的 MAPK进入细胞核内使一些转录因子磷酸化,如Fos、Jun、Myc等。磷酸化的转录因子与DNA结合的亲和力大大增加,增强了特异基因的转录。Ras蛋白处于活化状态的时间很短,大约30分钟,其内在的GTP酶活性很快使其恢复到非活性状态。Ras信号转导的解除主要是通过特异磷酸酶将被磷酸化激活的激酶中的磷酸基团除去。Ras信号转导途径与细胞的生长分裂有相当大的关系,并且与细胞的癌变密切相关。已经发现参与Ras信号转导的许多蛋白或酶与癌的发生有关,有些参与癌基因的诱导表达。在Ras途径中,只要是与癌基因诱导表达有关的蛋白的突变,都会导致癌变。如Ras蛋白发生了变异,其构象随之改变,造成GAP不能识别和激活Ras蛋白的GTP酶活性,因此癌细胞中Ras蛋白既可与GTP结合,也可与GDP结合,这在总体上改变了细胞生长状况,使之异常增殖。

18. 为什么说细胞通过表面接触能够引起细胞的增殖?

答: 主要是通过粘着斑中的相关蛋白进行信号转导的结果。粘着斑具有两大功能:(1)通过肌动蛋白纤维形成的网络起机械结构的作用;(2)信号转导作用,主要是通过酪氨酸蛋白激酶Src和FAK进行的。Src将FAK磷酸化,磷酸化的FAK与Grb2-Sos连接起来,然后去激活Ras,将信号沿MAP激酶途径进行转导。信号最后可进入细胞核,激活与生长和增殖相关基因的转录。粘着斑中一些与信号转导相关的关键蛋白与受体酪氨酸激酶途径是相同的,其信号转导途径也很相似。当Src磷酸化FAK时,在FAK分子中形成一个磷酸酪氨酸,可作为接头蛋白Grb2的SH2结构域的结合位点。Grb2与FAK结合后能够激活Ras蛋白,然后将生长相关的信号传递给细胞核。这就是细胞通过表面的接触导致细胞增殖的原因所在。由粘着斑介导的信号转导不仅会启动基因的表达,也会影响细胞质的代谢和蛋白质合成。 19. 什么是Rho蛋白? Rho蛋白它如何控制粘着斑的装配?

答: Rho蛋白是一种小分子的G蛋白,在形态和结构上与Ras蛋白相似; 在功能上, Rho蛋白也是一种分子开关,决定信号是沿哪一条途径传递。在粘着斑的装配中,信号转导主要是调节应力纤维的装配。配体与整联蛋白结合后,激活了Rho蛋白(Rho中的GDP被GTP取代),Rho-GTP激活两条不同的信号转导途径:一条是Rho-GTP激活磷脂酰肌醇5-激酶[PI(5)K], PI(5)K将磷酸基团转移给PI(4)P的5’位,生成PI(4,5)P2, PI(4,5)P2能够与很多靶蛋白结合。 当PI(4,5)P2同凝溶胶蛋白(gelsolin)、抑制蛋白(profilin)结合时,促使它们与所结合的蛋白�F-肌动蛋白、G-肌动蛋白分离。G-肌动蛋白的释放可导致F-肌动蛋白进一步聚合。在另一个途径中, Rho-GTP同Rho激酶结合,使之激活,激活的激酶使肌球蛋白轻链磷酸酶磷酸化并使其失去磷酸酶的抑制作用,使肌球蛋白以一种活性的、磷酸化的状态参与应力纤维的装配。

20. 举例说明信号转导途径的汇集。

答: 信号转导途径的汇集是指不同的信号分子分别作用于不同的受体,但是最后的效应物是相同的。

如胰岛素和表皮生长因子分别作用于不同的受体系统,但是受体的细胞内结构域磷酸化后的位点都可作为SH2的锚定位点,换句话说,凡具有SH2结构域的蛋白既能同胰岛素受体的磷酸化部位结合也能同PDGF受体的磷酸化部位结合,实际上,通过SH2将这两种不同受体所接收的信号整合到一起。又如, 我们所讨论过的与信号转导有关的细胞表面受体有四种类型,即离子通道偶联受体、G蛋白偶联受体、酶联受体和整联蛋白受体。在这些受体中,有三种类型的受体的信号转导涉及Grb2-Sos复合物。虽然这三种类型受体结合的细胞外的配体不同,但是它们都能够形成磷酸酪氨酸位点,锚定具有SH2结构域的接头蛋白Grb2,然后通过Sos激活Ras,激活的Ras通过激活MAP激酶的级联系统进行信号转导。其结果,将不同受体结合的信号汇集起来,引起靶细胞中一套相同的促进细胞分裂的基因转录和翻译。 21. 请根据信号转导作用的机理说明磷酸酶在细胞信号解除中的作用。

答: 磷酸酶在信号解除中具有重要作用。在许多信号转导途径中,蛋白激酶靠磷酸化作用将一些靶蛋白(酶)激活。蛋白质的磷酸化是一种可逆的化学修饰,所以通过蛋白激酶添加的蛋白质上的磷酸基团可通过蛋白磷酸酶的作用被除去。实验表明,激酶与磷酸酶对底物的影响是相反的,当磷酸化激活底物时,可通过脱磷酸将底物失活,反之亦然。所以,磷酸酶在细胞内的作用与磷酸化酶一样重要。据估计,人的基因组编码1000种以上的磷酸酶(激酶大约2000种),这说明磷酸酶在细胞中是非常重要的酶。如同蛋白激酶一样,某些磷酸酶是多功能的,并且能够脱去几种蛋白质中的磷酸基团。但有些磷酸酶的活性相当专一,只能将一种或两种底物中的磷酸基团脱去。象丝氨酸/苏氨酸和酪氨酸磷酸激酶一样,多数磷酸酶分为丝氨酸/苏氨酸

磷酸酶和酪氨酸磷酸酶,它们只能从磷酸化的丝氨酸/苏氨酸残基或磷酸化的酪氨酸残基脱磷酸,但不能同时从这两种类型的残基上脱磷酸。不过,有些磷酸酶既能将磷酸化的丝氨酸/苏氨酸残基上的磷酸脱去,又能从磷酸化的酪氨酸残基脱去磷酸。

第六章核糖体和核酶

1. 发现核糖体及核糖体功能鉴定的两个关键技术是什么?

答: 核糖体最早是Albert Claude于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(Microsomes),直到1950s中期,George Palade在电子显微镜下观察到这种颗粒的存在。当时George Palade和他的同事研究了多种生物的细胞,发现细胞质中有类似的颗粒存在,尤其在进行蛋白质合成的细胞中特别多。后来Philip Siekevitz用亚细胞组份分离技术分离了这种颗粒,并发现这些颗粒总是伴随内质网微粒体一起沉积。化学分析揭示,这种微粒富含核苷酸,随之命名为ribosome,主要成分是核糖体RNA(rRNA),约占60%、蛋白质(r蛋白质)约占40%。核糖体的蛋白质合成功能是通过放射性标记实验发现的。将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。两个关键技术是亚细胞组份分离技术和放射性标记技术。 2.说明人体单倍体染色体组中四种rRNA基因的组成、排列方式和拷贝数。

答: 在人基因组的四种rRNA基因中, 18S、5.8S和28S rRNA基因是串联在一起的,每个基因被间隔区隔开, 5S的rRNA基因则是编码在另一条染色体上。前3个基因组成一组, 分布在人的13、14、15、21、22 等5条染色体上。在间期核中,所有这5条染色体rRNA基因区域, 转录时聚集在一起, 形成一个核仁。在人体单倍体染色体组中, 每组rRNA基因有200个拷贝。每一拷贝为一个rDNA转录单位。这3个基因是纵向串联排列在核仁组织者的DNA上。 拷贝数达几真核细胞核糖体的5S rRNA基因则是独立存在于一个或几个染色体上,

千个。在人的细胞中, 该基因的拷贝有24000个之多, 它们串联排列在1号染色体接近末端处。 3.根据3H标记的尿嘧啶和放线菌素D研究人的培养细胞前体rRNA的合成,推测出前体rRNA的加工过程, 请问3H标记的尿嘧啶和放线菌素D各起什么作用?

答: 3H标记的尿嘧啶是追踪RNA的, 而加入放线菌素D是为了阻断RNA的合成, 这样随着RNA加工的进程, rRNA分子越来越小, 便于判断。如果不阻断RNA合成, 新合成的45SrRNA就会干扰判断。在上述的研究中发现, 当人的细胞同3H标记的尿嘧啶共培养25分钟后,被标记rRNA 的沉降系数是45S,加入放线菌素D阻断RNA的合成后,标记的45S rRNA首先转变成32S的rRNA,随着培养时间的延长,逐渐出现被标记的28S、18S的rRNA。 4. 有人用核糖体重组实验得到一些重要的结论,你能说出一、二吗? 答: 这些结果包括以下几个方面:①30S亚基的蛋白质专同16S rRNA结合; 50S 亚基的蛋白质只同23S rRNA结合,如果把30S亚基rRNA和50S 亚基的蛋白质相混合,则不能装配成有功

能的亚基。②从不同种细菌提取30S 亚基的rRNA和蛋白质, 可装配成有功能的30S 亚基,

这表明不存在种间差异。③原核生物核糖体与真核生物核糖体的亚基彼此不同, 由二者的rRNA和蛋白质重组后的核糖体没有功能。④大肠杆菌的核糖体与玉米叶绿体核糖体亚基重组后具有功能。⑤由于不同生物的线粒体核糖体大小不同,由55S到80S不等, 而原核生物的核糖体基本稳定,所以线粒体的核糖体亚基同原核生物核糖体亚基相互交换形成的杂合核糖体没有功能。

5. 真核细胞中核糖体的合成和装配过程如何?

答: 整个过程相当复杂, 首先要合成与核糖体装配有关的蛋白质,这些蛋白质包括核糖体结构蛋白和与前体rRNA加工有关的酶。它们都是在细胞质的游离核糖体上合成,然后迅速集中到细胞核并在核仁区参与核糖体亚基的装配。而组成核糖体亚基的18S rRNA、5.8 SrRNA

5S rRNA却是在细胞核中转和28S rRNA基因则是在核仁中边转录边参与核糖体亚基的装配,

录后运送到核仁中参与核糖体亚基的装配。装配过程中,45S RNA、5S RNA同蛋白质形成80S RNA颗粒,然后80S 颗粒被降解成大小两个颗粒,大颗粒为55S,含有32S 和5S两种RNA,小颗粒含有20S的前体rRNA。然后,小颗粒中的20S RNA前体被快速降解成 18S 的rRNA,并运送到细胞质中,即是成熟的核糖体小亚基。55S大颗粒中的32S RNA被加工形成28S和 5.8S 两种rRNA成为成熟的大亚基后,被运送到细胞质中,这个过程比较慢。如果这时有mRNA同小亚基结合的话,大亚基即可结合上去形成完整的核糖体,并进行蛋白质的合成。 6. 二十世纪六十年代初期Robert Perry发现核糖体的合成是在核仁中进行的, 请问他是如何发现的?

答: 二十世纪六十年代初期Robert Perry用紫外微光束破坏活细胞的核仁,发现破坏了核仁的细胞丧失合成rRNA的能力,这一发现提示核仁与核糖体的形成有关。后来Perry又发现低浓度的放线菌素D能够抑制3H-尿嘧啶掺入rRNA中,而不影响其他种类的RNA合成。显微放

射自显影也显示放线菌素D能够选择性阻止核仁RNA的合成,表明核仁与rRNA的合成有关。

7. 原核生物蛋白质合成起始复合物形成包括哪些过程?需要哪些因子参与?

答: 主要分为三步, 参与的因子包括起始因子1-3,以及mRNA、转运tRNA、GTP等。①30S亚基与mRNA的结合 mRNA不能与完整的核糖体结合,但是能够同独立存在的30S核糖体小

30S核糖体小亚基通过16S rRNA与mRNA起始密码子AUG上游的亚基结合。在原核生物中,

SD序列的互补,从而与mRNA结合。核糖体小亚基与mRNA的结合还需要起始因子(initiation factor. IF)的帮助,原核生物的起始因子命名为IFs,真核生物的起始因子命名为eIFs。原核生

IF3)通过与30S核糖体亚基的结合帮助30S亚基与mRNA物有三种起始因子,其中有两种(IF1、

的识别与结合。② 第一个aa-tRNA进入核糖体 当mRNA与核糖体小亚基结合后,携带甲酰甲硫氨酸的tRNA通过反密码子与mRNA中AUG的识别从而进入核糖体。起始tRNA在与mRNA形成mRNA-30S亚基复合物之前,必须同GTP、起始因子IF2结合,形成GTP-IF2-tRNAfMet复合物。起始tRNA复合物与mRNA的AUG密码子结合后,释放IF3。③ 完整起始复合物的装配 一旦起始tRNA与AUG密码子结合,核糖体大亚基就加入到复合物中形成完整的核糖体-mRNA起始复合物。该过程伴随GTP的水解、IF1和IF2的释放。其中GTP的水解可能引起核糖体构型的变化,而改变了的构型正是蛋白质合成所必需的。 8. 请详细说明多肽链延伸的过程。

答: 蛋白质合成的肽链延伸涉及四个重复的步骤∶①氨酰tRNA进入核糖体的A位点;②肽键形成;③转位;④脱氨酰tRNA释放。上述四步的循环,使肽链不断延长。在整个过程中,需要GTP和一些延长因子的参与。①氨酰-tRNA进入A位由于起始tRNA占据P位点,核糖体开始接受第二个氨酰-tRNA进入A位点,此即为延伸的第一步。第二个氨酰-tRNA在进入A位点之前,必须与结合有GTP的蛋白延伸因子结合(原核细胞中延伸因子是Tu,真核生物则是eEF1)。Tu起传递作用,即将氨酰-tRNA传递给核糖体。虽然任何氨酰-tRNA-Tu-GTP都有可能进入A位,但只有反密码子与A位点密码子相匹配的tRNA才允许进入A位。一旦合适的氨酰-tRNA-Tu-GTP同A位点的密码子结合,GTP水解,Tu-GDP被释放。②肽键形成当核糖体的P位和A位都有tRNA占据时,进入核糖体的两个氨基酸是分开的,所以延伸反应的第二步是两个氨基酸相互作用,通过肽键的形成将两个氨基酸结合起来。即由A位的aa-tRNA 上氨基酸的氨基与P位aa-tRNA 上氨基酸的羧基间形成肽键, 使P位的tRNA卸去氨基酸,而A位上的tRNA形成了二肽。肽键的形成是自动发生的,不需要额外的能量。这一反应是由肽酰转移酶(peptidyl transferase)催化的,该酶是核糖体大亚基的组成成份。多年来一直认为肽酰转移酶是组成50S亚基的一种蛋白,现在已经清楚,它是构成核糖体的RNA,是核酶。③转位(translocation) 当形成了第一个肽键时,A位点上的tRNA分子的一端仍然与mRNA的密码子结合,而另一端与肽结合.此时P位点上的tRNA没有氨基酸的结合。接下来进入延伸反应的第三步:转位,即核糖体沿着mRNA从5'→3'方向移动三个核苷酸(一个密码子),在此过程中,A位的tRNA-二肽移到P位,而P位的tRNA则进入E位点。转位需要另一个GTP结合的延伸因子的参与(原核生物是延伸因子G,真核生物是延伸因子eEF2)。GTP水解释放的能量转变成机械能,将核糖体沿着mRNA移动大约1 nm。④脱氨酰tRNA的释放 延伸反应的最后一步是脱氨酰tRNA离开核糖体的E位点。一旦肽酰tRNA转位到P位,A位点再次开放,接受下一个aa-tRNA。在这种情况下,进入的氨酰-tRNA的反密码子必须与第三个密码子

耗互补,开始下一个循环。在蛋白质合成的延伸反应中,每一次循环至少水解两分子的GTP,

时二十分之一秒,速度之快是惊人的。

9. 在肽链延伸过程中tRNA的转位是是如何进行的?

答: 通过足迹法(footprinting)分析,揭示在蛋白质合成的延伸循环中,tRNA的转位是分两步进行的,并且相互独立(图Q6-1)。①肽键的形成引起新形成的肽酰tRNA大亚基的受体部分从A位向P位偏移,而它的小亚基的反密码子部分仍然与A位的密码子相连(此时的状态称为A/P结合状态)。新形成脱氨酰tRNA的受体从大亚基的P位向E位偏移,而它的反密码子部分仍然在小亚基的P位,此时的状态称为P/E结合状态。

②核糖体与EF-G-tRNA复合物结合,引起这些tRNA的反密码子的末端与它们结合的mRNA一起相对于小亚基移动,使得肽酰-tRNA完全占据大、小亚基的P位点(P/P结合状态),而脱氨酰tRNA则完全移到大亚基的E位点。

10. 多聚核糖体形成的意义何在? 答: 同一条mRNA被多个核糖体同时翻译成蛋白质,大大提高了蛋白质合成的速率,更重要的是减轻了细胞核的负荷, 减少了基因的拷贝数, 也也减轻了细胞核进行基因转录和加工的压力。

11. 如何根据嘌呤霉素实验的结果判断核糖体中的A、P是两个分开的独立位点?

答: 可以这样分析:在第一组实验中,只有起始tRNA占据P位,如果A位点是一个独立位点的话,此时的A位点就是空闲的,嘌呤霉素当然能够结合上去,如果A位点与P位点是同一位点,那么嘌呤霉素就不能与核糖体结合,实验结果是嘌呤霉素能够结合。在第二组实验中,由于A位点已经被二肽酰tRNA占据,所以嘌呤霉素无法与A位点结合,只有加入延伸因子和GTP后,使A位点腾空,嘌呤霉素才能结合到核糖体上。因此两根据这两组实验结果可以

断定A、P是两个独立的功能位点。

12. 根据原核细胞中反义RNA作用方式的不同分为三类,请推测它们的作用方式有什么不同? 答: 这三类反义RNA的作用特点分别是:I类反义RNA直接作用于其靶mRNA的SD序列和/或编码区,引起翻译的直接抑制(1A类); 或与靶mRNA结合后引起该双链RNA分子对RNA酶Ⅲ的敏感性增加, 使其降解(1B类)。Ⅱ类反义RNA 与mRNA的SD序列的上游非编码区结合,从而抑制靶mRNA的翻译功能,其作用机理尚不清楚,可能是反义RNA与靶mRNA上游序列结合后, 会引起核糖体结合位点区域的二级结构发生改变, 从而抑制了与核糖体的结合。Ⅲ类反义RNA可直接抑制靶mRNA的转录:如tic RNA(transcriptioninhibitory complementary RNA)是大肠杆菌中CAP蛋白(cAMP结合蛋白)的mRNA的反义RNA。ticRNA基因的启动子可被cAMP-CAP复合物所激活,从CAP mRNA的转录起始位点上游3个核苷酸处开始, 以CAP mRNA的模板DNA链的互补链为模板, 合成ticRNA。ticRNA的具体长度不清楚, 但是它的5'端一段正好和CAP mRNA的5'端有不完全互补,可以形成RNA双链杂合体。而在CAP mRNA上紧随杂交区之后的是一段约长11bp的A?U丰富区。这样的结构与ρ因子不依赖性的转录终止子的结构十分相似,可以使CAP mRNA的转录刚刚开始不久即迅速终止。这一例子是CAP蛋白合成的自我调节的最好说明。当CAP合成达到一定量之后, 即与cAMP结合形成cAMP-CAP复合物,再激活ticRNA的启动子转录出ticRNA, 反过来抑制CAP-mRNA的合成。

13. 核酶是如何被发现及证实的? 这一发现有什么意义?

答: 1981年,Thomas Cech和他的同事在研究四膜虫的26S rRNA前体加工去除基因内含子时获得一个惊奇的发现∶内含子的切除反应发生在仅含有核苷酸和纯化的26S rRNA前体而不含有任何蛋白质催化剂的溶液中,可能的解释只能是:内含子切除是由26S rRNA前体自身催化的,而不是蛋白质。为了证明这一发现,他们将编码26S rRNA前体DNA克隆到细菌中并且在无细胞系统中转录成26S rRNA前体分子。结果发现这种人工制备的26S rRNA前体分子在没有任何蛋白质催化剂存在的情况下,切除了前体分子中的内含子。这种现象称为自我剪接(self-splicing),这是人类第一次发现RNA具有催化化学反应的活性,具有这种催化活性的RNA称为核酶。这一发现之后不久,在酵母和真菌的线粒体mRNA和tRNA前体加工、叶绿体的tRNA 和rRNA前体加工、某些细菌病毒的mRNA前体加工中都发现了自我剪接现象。Thomas Cech 因发现了核酶而获得1989年诺贝尔化学奖。核酶的发现在生命科学中具有重要意义,在进化上使我们有理由推测早期遗传信息和遗传信息功能体现者是一体的,只是在进化的某一进程中蛋白质和核酸分别执行不同的功能。核酶的发现为临床的基因治疗提供了一种手段,具有重要的应用前景。 14. 说明核剪接的套索模型的机理。

答: 内含子的剪接分为两个主要的阶段。第一阶段是从内含子的5'端开始切割,将左边的外显子与右边的内含子-外显子分开,左边的外显子是一个线性分子,右边的内含子-外显子形成一个套索结构,在套索结构中,内含子的5'端同内含子右侧一个碱基相连形成一个环。第二个阶段是在剪接位点的3'端切割,释放套索中的内含子,同时右边的外显子与左边的外显子连接起来,切割和连接反应不是独立的,而是协同进行的。在这一过程中要由U1、U2、U4/U6、U5 snRNP装配成剪接体。首先是由U1和U2 snRNPs结合到内含子的两侧, 然后U4/U6复合物和U5结合上来形成无活性的剪接体, 无活性剪接体经过重排, 将U1和U4排除出去,形成活性剪接体,然后将内含子切除。

第七章 线粒体与过氧化物酶体

1. 从线粒体的发现和功能鉴定的简史中,你有何体会? 答: 1850年,德国生物学家Rudolph K?lliker第一个发现在肌细胞的细胞质中存在着一种规则排列的颗粒,并且从肌细胞中分离到这些颗粒。发现将分离的颗粒放置在水中能够膨胀,为此推测∶这种颗粒是由半透性的膜包被的。1898年,有人首次将这种颗粒命名为线粒体,意

(thread-like granule),1900年,Leonor Michaelis思是“类似线状的颗粒”并很快被大家所接受。

在线粒体的功能研究方面取得了突破性的进展。他用染料Janus green对肝细胞进行染色,这种染料将线粒体染成绿色。当细胞消耗氧之后,线粒体的颜色逐渐消失了,当时已经了解这种颜色的变化是颜料的氧化还原状态改变的结果,从而提示线粒体具有氧化还原反应的功能。1913年,Otto Warburg从细胞匀浆质中分离了线粒体,并发现它能够消耗氧。但是,这些发现当时并没有引起生物学家足够的重视,因为人们普遍认为线粒体的作用主要是参与分化细胞遗传特性的转变。人们真正注意线粒体在能量代谢中的作用是分离纯化方法的发展和线粒体独立功能的研究。在20世纪40年代早期,Arbert Claude开创了细胞组分分离技术,能够将线粒体与其他细胞组分分开。但他所用是盐法,而盐会破坏线粒体的作用,所以用这种方法分离的线粒体看不到有关Krebs循环以及呼吸链的成份。1948年,George Hogeboom、Walter Schneider 和 George Palade等终于分离到具有生物活性的线粒体,他们采用的分离介

质是蔗糖而不是盐,因此不会破坏线粒体。分离方法上的突破,使得Eugene Kenedy和Albert Lehninger 证明了线粒体具有Krebs循环、电子传递、氧化磷酸化的作用,从而证明了线粒体是真核生物进行能量转换的细胞器。

体会是四点:①关于膜结构的推测; ②功能的推测;③方法的发展; ④方法的革新。 2. 线粒体外膜的通透性差,又没有电子传递装置, 所以没有什么作用, 此说正确吗?

答: 不正确。虽然外膜中外膜含有孔蛋白, 最大可允许5,000道尔顿的分子通过,由于ATP、NAD、辅酶A等的相对分子质量都小于1,000道尔顿,因此这些分子都能自由通过外膜。所以外膜的通透性非常高,使得膜间隙中的环境几乎与胞质溶胶相似。但是它有两个重要的作用: 一是建立了膜间隙,有利于建立电化学梯度;第二是外膜含有一些特殊的酶类,如参与色氨酸降解、脂肪酸链延伸的酶,表明外膜不仅参与膜磷脂的合成,同时对那些将在线粒体基质中进行彻底氧化的物质先行初步分解。外膜上含有单胺氧化酶(monoamine oxidase),该酶是外膜的标志酶,这种酶能够终止胺神经递质,如降肾上腺素和多巴胺的作用。

3. 比较线粒体外膜、内膜、膜间隙和基质的化学特性和功能的主要差别。 答: 外膜是线粒体最外的一层全封闭的单位膜结构,是线粒体的界膜,厚6~7nm, 平整光滑。外膜含有孔蛋白, 所以外膜的通透性非常高,使得膜间隙中的环境几乎与胞质溶胶相似。外膜含有一些特殊的酶类,外膜上含有单胺氧化酶(monoamine oxidase),该酶是外膜的标志酶,这种酶能够终止胺神经递质,如降肾上腺素和多巴胺的作用。外膜的主要作用是形成膜间隙, 帮助建立电化学梯度, 同时能进行一些生化反应,协助线粒体内膜和基质完成能量转换功能。

厚5~6nm。内膜是位于外膜的内侧包裹线粒体基质的一层单位膜结构,内膜的通透性较低,

一般不允许离子和大多数带电的小分子通过。内膜的蛋白与脂的比例相当高,并且含有大量的心磷脂(cardiolipin),约占磷脂含量的20%,心磷脂与离子的不可渗透性有关。线粒体内膜通常要向基质折褶形成嵴(cristae), 嵴的形成使内膜的表面积大大增加。线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒(elementary particle),即ATP合酶(ATP synthase),又叫F0 F1 ATP酶复合体, 是一个多组分的复合物。内膜的酶类可以粗略地分为三个大类∶①运输酶类∶内膜上有许多运输酶类进行各种代谢产物和中间产物的运输;②合成酶类∶内膜是线粒体DNA、RNA和蛋白质合成的场所;③电子传递和ATP合成的酶类∶这是线粒体内膜的主要成分,参与电子传递和ATP的合成。内膜的标志酶是细胞色素氧化酶。内膜是线粒体进行电子传递和氧化磷酸化的主要部位,含有电子传递链中进行氧化反应的蛋白和酶。在电子传递和氧化磷酸化过程中,线粒体将氧化过程中释放出来的能量转变成ATP。膜间隙是线粒体内膜和外膜之间的间隙,宽6~8 nm, 其中充满无定形的液体,含有可溶性的酶、底物和辅助因子。膜间隙中的化学成分很多,几乎接近胞质溶胶。腺苷酸激酶是膜间隙的标志酶,它的功能是催化ATP分子的末端磷酸基团转移到AMP,生成两分子ADP。膜间隙的功能是建立氢质子梯度。线粒体基质是内膜和嵴包围着的线粒体内部空间是线粒体基质。基质中的酶类最多,与三羧酸循环、脂肪酸氧化、氨基酸降解等有关的酶都存在于基质之中。此外还含有DNA、tRNAs、rRNA、以及线粒体基因表达的各种酶和核糖体。基质中的标志酶是苹果酸脱氢酶。线粒体基质的功能是进行氧化反应,主要是三羧酸循环。 4. 线粒体内膜的通透性极低, 它是如何进行物质运输的?

答: 由于线粒体对于大多数亲水物质的透性极低,所以它必须具备特殊的主动运输系统,完成下列运输作用:①糖酵解产生的NADH必须进入电子传递链参与有氧氧化;②线粒体产生的代谢物质如草酰辅酶A和乙酰辅酶A必须运输到细胞质中,它们分别是细胞质中葡萄糖和脂肪酸的前体物质;③线粒体产生的ATP必须进入到胞质溶胶,以便供给细胞反应所需的能量,同时,ATP水解形成的ADP和Pi又要被运入线粒体作为氧化磷酸化的底物。在线粒体内膜上具有完善的运输系统,主要是运输蛋白和一些起促进运输作用的脂类(如心磷脂)。运输系统也包括参与电子传递和氢质子传递的复合物,内膜上有运输丙酮酸、脂肪酸和特殊氨基酸的运输蛋白,其中某些运输蛋白(包括同向和逆向)是靠质子梯度驱动的。线粒体氧化磷酸化作用所需无机磷(Pi)输入是与线粒体中OH-的输出同时逆向进行的(二者间输入与输出的比值为1:1)。线粒体中由ADP+Pi生成的ATP向细胞质的运送是通过另一种运输蛋白与细胞质中的ADP进行交换完成的,其结果,ATP被运输到胞质溶胶供细胞代谢需要,ADP被运进线粒体基质,与运进的Pi一起参与ATP的合成。这两种逆向运输泵共同维持线粒体基质中高ADP和Pi的浓度。

5. 线粒体内膜是如何进行Ca2+运输的?对细胞质中Ca2+浓度调节有何意义? 答: 线粒体内膜上有两种类型的Ca2+运输系统,能够将Ca2+输入到线粒体基质中,或将Ca2+从线粒体基质运输到膜间隙。系统1是由膜动力势引起的Ca2+离子流向线粒体基质;系统2

Ca2+从线粒体膜间隙输入到线粒体基是通过与Na+离子的交换将Ca2+离子输出到胞质溶胶。

质是由内膜上的膜动力势驱动的(内膜内侧带负电,能吸引正电离子)。Ca2+输入的速率随着外部Ca2+浓度的变化而变化。在心脏、脑和骨骼肌等组织中,Ca2+的输出是由Na+梯度驱动的,即与Na+进行逆向协同运输。在正常情况下,这种交换运输的速度非常之快。因此,线

粒体、内质网和肌质网都能作为细胞质中Ca2+调节的缓冲区域。如果胞质溶胶中Ca2+浓度升高,Ca2+输入线粒体的速率提高,而Ca2+输出的速率维持不变,这样导致线粒体基质Ca2+浓度的升高而胞质溶胶中Ca2+浓度下降到原始的浓度水平。反之,胞质溶胶中Ca2+浓度的下降,促使线粒体对Ca2+输入速率的下降,而只有线粒体Ca2+的输出速率不变,最后导致胞质溶胶中Ca2+浓度恢复到一个设定点(set-point)。 6. 比较引导序列与信号序列有什么不同?

答: 无论是在游离核糖体合成的蛋白质还是在膜结合核糖体合成的蛋白质,它们的转运都是由信号引导的,这种信号一般存在于蛋白质的N-端,这就是蛋白质的定位信号。由于游离核糖体合成的蛋白质与膜结合核糖体合成的蛋白质的运输信号不同导致运输机制的不同,为了便于区别它们,将游离核糖体上合成的蛋白质的N-端信号统称为导向信号(targeting signal),或导向序列(targeting sequence),由于这一段序列是氨基酸组成的肽,所以又称为转运肽(transit peptide),或导肽(leading peptide)。将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列(signal sequence),将组成该序列的肽称为信号肽(signal peptide)。在不需要特别区分时,可将它们统称为信号序列或信号肽。虽然转运到细胞核中的蛋白质也是在游离核糖体上合成的,由于此类蛋白的运输机制特别,所以将这些蛋白中的定位引导序列称为核定位信号(nuclear localization signal, NLS)。 7. 线粒体基质蛋白是如何定位的?

答: 定位过程是: 前体蛋白在游离核糖体合成释放之后,在细胞质分子伴侣Hsp70的帮助下解折叠,然后通过N-端的转运肽同线粒体外膜上的受体蛋白识别,并在受体(或附近)的内外膜接触点(contact site)处利用ATP水解产生的能量驱动前体蛋白进入转运蛋白(protein translocator)的运输通道,然后由电化学梯度驱动穿过内膜,进入线粒体基质。在基质中, 由线粒体分子伴侣Hsp70(mHsp70)继续维持前体蛋白的解折叠状态。接着在Hsp60的帮助下,前体蛋白进行正确折叠,最后由转运肽酶切除导向序列,成为成熟的线粒体基质蛋白。 8. 从线粒体基质蛋白质的定位,可看出导肽在转运蛋白时具有哪些特点? 答: 线粒体转运肽转运蛋白质时,具有以下特点:①需要受体由于被转运的蛋白质需要穿过(或插入)线粒体膜,转运肽首先需要与线粒体膜上的受体识别,然后才能进行转运。②从接触点进入 线粒体的内外膜要局部融合形成被运输蛋白进入的接触点(contact site)。③蛋白质要解折叠 蛋白质在合成时为了防止降解,需要立即折叠形成空间结构,但是在转运时,必须解折叠,运入线粒体之后再重新折叠,④需要能量 转运肽引导的蛋白质转运是一个耗能过程,既要消耗ATP,又要膜电位的驱动。⑤需要转运肽酶由于转运肽只是起蛋白质转运的引导作用,而非蛋白质的永久结构,所以,当蛋白质到达目的地后,转运肽要被切除,是由转运肽酶(transit peptidase)催化的。⑥需要分子伴侣的帮助在线粒体蛋白的转运过程中,至少需要两种类型的分子伴侣的参与,一种是帮助转运的蛋白质解折叠,另一种是将转运的蛋白质重新折叠。

9. 葡萄糖在胞质溶胶中进行糖酵解时形成的1分子NADH是怎样被氧化的?

答: 葡萄糖在胞质溶胶中进行糖酵解时形成1分子NADH, 由于胞质溶胶中形成的NADH自身不能进入线粒体,但可通过另外的方式将其电子转移到线粒体并参与电子传递:将电子还原那些小分子的代谢物,这些小分子的代谢物能够:①通过苹果酸-天冬氨酸穿梭(malate-aspartate shuttle)进入线粒体,然后将线粒体中NAD+还原成NADH;②通过甘油磷酸穿梭(glycerol-phosphate shuttle),将电子传递给线粒体的FAD,使其还原形成FADH2。这些被还原的辅酶通过线粒体内膜的电子传递链最后被传给氧。

如在甘油-磷酸穿梭过程中,电子从NADH转移给二羟丙酮磷酸(DHAP)生成甘油-3-磷酸, 甘油-3-磷酸进入线粒体膜间隙后被线粒体内膜中的甘油3-磷酸脱氢酶脱氢,将内膜中FAD还原成FADH2。脱氢的甘油-3-磷酸又穿梭回到胞质溶胶,FADH2在内膜中被氧化。 10. 什么是递氢体? 有什么作用?

答: 组成呼吸链的成员中除了电子载体外,有些还具有将质子跨膜传递到膜间隙的作用,通常将能够传递质子的复合物称为递氢体,或称递质子体递。在呼吸链的四个复合物中,复合物Ⅰ、Ⅲ、Ⅳ既是电子载体,又是递氢体; 复合物Ⅱ只是电子载体,而不是递氢体。质子从线粒体基质跨膜传递到线粒体膜间隙是一种耗能的过程,递氢体利用电子在呼吸链中传递时释放的自由能完成递氢过程。实际上,正是呼吸链中的递氢体通过对质子的跨膜传递,将NADH和FADH2在氧化过程中释放出来的自由能转变成势能,这种势能可进一步用于ATP 的合成。质子跨过内膜向膜间隙的转运也是一个生电作用(electrogenesis),即电压生成的过程。因为质子跨膜转运使得膜间隙积累了大量的质子,建立了质子梯度。由于膜间隙质子梯度的建立, 使内膜两侧发生两个显著的变化∶一是线粒体膜间隙产生大量的正电荷,而线粒体基质产生大量的负电荷,使内膜两侧形成电位差;二是两侧氢离子浓度的不同因而产生pH梯度(ΔpH),这两种梯度合称为电化学梯度(electrochemical gradient)。线粒体内膜两侧电化学梯度的建立,能够形成质子运动力(proton-motive force,Δp),只要有合适的条件即可转变成化学能储存起来。

11. 化学渗透假说的主要内容是什么?主呼吸链每传递一对电子会将多少氢质子传递到膜间隙?次呼吸链呢? 答: 该学说的主要内容包括:①电子传递从NADH开始,复合物Ⅰ将还原型的NADH氧化,释放出的两个电子和一个H+质子被NADH脱氢酶上的黄素单核苷酸(FMN)接受,

NADH被氧化成NAD+重新进入TCA循环;同时从基质中摄取一个H+ 将FMN还原成FMNH2,

②FMNH2 将一对H+质子传递到膜间隙,同时将一对电子经铁硫蛋白(FeS)传递给Q池中的两个辅酶Q;③两个辅酶Q得到电子后从基质中摄取两个H+被还原成两个半醌(QH);④醌在内膜中通过扩散进行穿膜循环(醌循环),两个半醌各从细胞色素b获得一个电子,并从基质中再摄取两个H+ 质子,形成两个全醌(QH2);⑤当全醌扩散到内膜外侧时,便把两个电子传递给细胞色素c1,并向膜间隙释放一对H+ 质子,本身又被氧化成半醌;⑥当半醌扩散到接近细胞色素b时,将携带的另两个电子传递给细胞色素b,并又向膜间隙释放一对H+,细胞色素b的一对电子又回到醌循环;⑦细胞色素c1将接受的两个电子经细胞色素c和细胞色素氧化酶传递给氧,将氧还原成H2O;⑧一对电子经呼吸链传递到氧时,共将基质中3对H+ 泵到膜间隙,从而使膜间隙的H+ 浓度高于基质, 因而在内膜的两侧形成了电化学梯度。这种电化学梯度可驱动H+ 通过ATP合酶复合物进入基质, 每通过2个H+ 可产生1个ATP。

概括起来.在呼吸链进行的电子传递和质子的传递过程中,每传递一对电子,共传递10个质子,其中2个用于合成水,8个被传递到线粒体膜间隙建立质子梯度。 12. 什么是结合改变模型?

答: ATP合酶合成ATP的分子机理的研究一直是研究的热点,为多数人接受的ATP合酶合成ATP的模型是“结合改变模型”。该模型认为F1中的γ亚基作为C亚基旋转中心中固定的转动杆, 旋转时会引起αβ复合物构型的改变, 有三种不同的构型,对ATP和ADP具有不同

ADP和Pi结合;②L型同ADP和Pi的结合较强;③T型与ADP的结合能力: ①O型几乎不与ATP、

和Pi的结合很紧,并能自动形成ATP,并能与ATP牢牢结合。当γ亚基旋转并将αβ复合物转变成O型则会释放ATP。

13. 过氧化物酶体是怎样进行氧浓度的调节?有什么意义?

答: 过氧化物酶体中的氧化酶都是利用分子氧作为氧化剂,催化下面的化学反应: RH2 + O2 ---------→ R + H2O2

这一反应对细胞内氧的水平有很大的影响。例如在肝细胞中,有20%的氧是由过氧化物酶体消耗的,其余的在线粒体中消耗。在过氧化物酶体中氧化产生的能量以产热的方式消耗掉, 而在线粒体中氧化产生的能量贮存在ATP中。线粒体与过氧化物酶体对氧的敏感性是不一样的,线粒体氧化所需的最佳氧浓度为2%左右,增加氧浓度,并不提高线粒体的氧化能力。过氧化物酶体与线粒体不同,它的氧化率是随氧张力增强而成正比地提高。因此,在低浓度氧的条件下,线粒体利用氧的能力比过氧化物酶体强,但在高浓度氧的情况下,过氧化物酶体的氧化反应占主导地位,这种特性使过氧化物酶体具有使细胞免受高浓度氧的毒性作用。 14. 过氧化物酶体是怎样增殖的? 所需的蛋白质和脂类是如何转运来?(举一例说明)。

答: 过氧化物酶体所有的酶和蛋白都是由核基因编码并在细胞质中游离核糖体上合成, 然后通过引导序列转运进来。构成过氧化物酶体的脂类都是由内质网合成并通过胞质溶胶中的磷脂交换蛋白转运。如过氧化氢酶是研究得较多的蛋白质,它是一种含血红素的四聚体蛋白, 在游离核糖体上先合成不含血红素的蛋白质单体, 输入到过氧化物酶体后在血红素存在下装配成四聚体。已发现在过氧化物酶体酶蛋白的羧基端有一个三氨基酸序列Ser-Lys-Leu-(SKL)起到引导肽的作用,如果将这种序列连接到其它细胞质的蛋白质上,能够将这种蛋白质引导到过氧化物酶体中。

第八章叶绿体和光合作用

1. 叶绿体是怎样形成的? 与其他质体的主要差异是什么?

答: 叶绿体是前质体在光照条件下诱导发育而来。在光的诱导下, 激发了叶绿体蛋白的合成,并跨过前质体的内膜运输到前质体内。同时内膜向内出芽形成膜泡,这些膜泡能够自我成堆排

(a)光触发叶绿素、列,通过摄取必要的蛋白和叶绿素, 最后形成成熟的类囊体。详细过程包括;

磷脂、叶绿体基质蛋白和类囊体蛋白的合成, 然后从叶绿体内膜出芽形成小泡;(b)前质体变大,某些球形的小泡融合,最后形成连成一体的扁平的类囊体小泡,某些类囊体小泡堆积起来并在光诱导下大量合成LHC蛋白;(d)叶绿体进一步变大,当更多的类囊体小泡形成基粒时,叶绿体成熟。叶绿体是惟一含有类囊体膜结构的质体,能够进行光合作用, 这是叶绿体与其他质体的根本区别。

2. 什么是交换载体? 运输时有什么特点?

答: 存在于叶绿体内膜中一类转运蛋白, 参与叶绿体的物质运输。此类蛋白运输的主要特点是通过交换进行的, 并且不消耗能量, 而是靠浓度梯度进行的。交换是一对一的交换, 如磷酸交换载体、二羧酸转运载体(dicarboxylate exchange carrier)等。 3. 叶绿体基质与线粒体基质有什么不同?

答: 主要表现在组成和功能上不同:

在电子显微镜下观察可见到叶绿体基质中有一些细微颗粒, 其中最多的是淀粉颗粒。这种颗粒是用于储存光合作用所产生的碳水化合物;另外还有一些含脂的沉积物称为质体小球(plastoglobuli),这种小球的产生同类囊体的破裂有关,当新类囊体形成时,老的类囊体破裂,可减少类囊体的数量和体积,由此可以推测质体小球可作为类囊体脂的储备库。基质中含有大量的可溶性蛋白, 其中RuBP羧化酶占可溶性蛋白总量的60%。此外, 叶绿体基质中还含有CO2固定反应的所有酶类。叶绿体基质中还有核糖体、DNA和RNA等。叶绿体的DNA大约编码100种多肽,涉及叶绿体DNA的复制、转录、遗传信息的翻译。基质是光合作用固定CO2的场所。

线粒体基质中主要参是参与TCA循环的酶类,功能是进行TCA循环。 4. 举例说明叶绿体基质蛋白定位的机理与特点。

答: 核酮糖1,5-二磷酸羧化酶(ribulose-1,5-bisphosphate carboxylase, Rubisco) 是叶绿体基质中进行CO2固定的重要酶类,相对分子质量为550 kDa,总共有16个亚基,其中8个大亚基(每个相对分子质量为55kDa)含有催化位点,8个小亚基(每个相对分子质量12 kDa)是全酶活性所必需的。Rubisco的大亚基由叶绿体基因编码,而小亚基则由核基因编码,在细胞质的游离核糖体上合成后被运送到叶绿体基质中。

通过离体实验表明,小亚基前体蛋白的N-端有一段引导肽序列,长为44个氨基酸残基,运输过程也需要分子伴侣Hsc70的参与,运输到叶绿体基质后,引导肽要被切除,最后8个小亚基与叶绿体基因编码的8个大亚基结合形成全酶。

在Rubisco小亚基蛋白运输中, 与通道形成和打开有关的受体蛋白有三种:Toc86主要是识别信

号序列, Toc75是通道蛋白, Toc34是调节蛋白, 与GTP结合后可改变Toc75的构型使通道打开。

与线粒体基质蛋白转运不同的是, 叶绿体基质蛋白转运的能量仅仅是ATP, 不需要电化学梯度的驱动。

5. 为什么说在进行光合作用时, 叶绿素分子必须组成功能单位?

答: 因为在实验中发现每固定一个CO2分子(或者说每释放一分子O2)需要2500个叶绿素分子,也就是说2500个分子的叶绿素吸收的光能才能用于一分子CO2的固定,后来发现每固定一分子CO2,需要消耗8个光子,由此推算固定一个光子大约需要300个分子的叶绿素(2500÷8≈300), 由此看来,叶绿素分子单枪匹马是不行的,必须由几百个叶绿素分子组成的功能单位才能进行光子的固定和进行光能的吸收。

6. 光系统是怎样将光能转变成化学能?

答: 光能转变成化学能包括光的吸收、光能的传递和转变等三个主要过程。

首先由光系统中的捕光复合物通过聚光色素吸收光子,使叶绿素分子由基态变为激发态,并通过共振机制极其迅速地相互传递,最后传给反应中心的一对特殊的叶绿素分子a, 这一对叶绿素分子与作为电子供体和受体的蛋白质紧紧地结合在一起。叶绿素a被激发成激发态, 同时放出电子给原初电子受体(primary electron receptor), 此时叶绿素a被氧化成带正电荷的氧化态, 而受体被还原成带负电荷的还原型受体。氧化态的叶绿素a又可从原初电子供体处获得电子而恢复为原来的还原状态, 原初电子供体则被氧化成氧化态, 这样不断地氧化还原, 就不断地把电子传递给原初电子受体, 原初电子受体将高能电子释放进入电子传递链,完成了光能转化为化能的过程。

7. 光合作用的电子传递链与氧化磷酸化作用的电子传递链有什么异同?

答: 光合作用电子传递链(photosynthetic electron transfer chain)也是由一系列的电子载体构成的,同线粒体呼吸链中电子载体的作用基本相似。但二者不同的是,线粒体呼吸链中的载体位于内膜,将NADH和FADH2的电子传递给氧,释放出的能量用于ATP的合成;而光合作用的电子载体位于类囊体膜上,将来自于水的电子传递给NADP+,并且这是一个吸热的过程而不是放热的过程。

象线粒体的呼吸链一样,光合作用的电子传递链中的电子载体也是细胞色素、铁氧还蛋白、黄素蛋白和醌等构成。

8. PSⅡ是怎样进行光能吸收、转换和电子传递的?

答: 光系统Ⅱ含有两个捕光复合物和一个光反应中心。首先LHCⅡ中的天线色素吸收光,然后

P680吸收了光能激发了一个将光能从LHC传递给反应中心叶绿素P680,P680 是一个二聚体。

电子,并传递给PSⅡ的原初电子受体脱镁叶绿素(Pheo),然后将电子传递给质体醌PQA.再传递给PQB,形成负电的游离PQB?- 。当以同样的方式吸收第二个光子并传递第二个电子到达PQB?-后,将PQB?- 转变成PQB2-,从叶绿体基质中摄取两个氢质子后,产生了PQH2,并被释放到膜的脂双层中,留下的空缺被新的PQB取代。在电子被传递时,来自水的电子经Tyrz传递到反应中心色素(步骤B和A)。

总的看来,PSⅡ催化电子从水传递给质体醌,并且建立了氢质子梯度,这是因为水氧化释放的氢质子进入类囊体腔,使类囊体腔中氢质子浓度升高,同时又从基质中摄取H+将PQB2-还原,降低

了叶绿体基质中氢质子的浓度,从而建立了类囊体膜两侧的H+质子梯度。 9. 水光解中释放的四个电子是如何被传递的?

答: 是由含锰的蛋白复合物介导的。该复合物中四个锰离子与PSⅡ的D1蛋白紧密地靠在一起,每个锰离子可以传递一个电子。四个锰离子可以连续四次,每次传递一个,共传递四个电子给邻近的P680+,使Mn带上正电荷。Mn传递的电子经过带正电荷的酪氨酸(Tyr+z)才能传给P680+, Tyrz也可写成TyrZ,它是反应中心的一种含酪氨酸残基的蛋白。Mn集团每传递一个电子给P680+,使其成为还原型的P680后,PSⅡ又可吸收一个光子, P680 又被氧化成P680+,以此反复,直到四个Mn都释放了电子成为氧化型之后, PSⅡ的氧释放复合物(oxygen-release complex) 才能从2分子水中移去四个电子,形成一分子氧,,并使Mn回复到原始状态(S0 state)。 从水光解释放的电子传递给PSⅡ的P680,再从P680传递给QB的路线综合如下: H2O→Mn→P680→脱镁叶绿素(Pheo)→QA→QB。 10. PSⅠ是怎样进行电子传递的?

答: PSⅠ的LCHⅠ吸收一个光子,然后将吸收的光能传递给反应中心的一对特别的叶绿素P700,使其中一个成为激发态从而释放一个电子,释放的电子经一系列与蛋白结合的电子载体:A0、A1、FeSx、FeSA、FeSB传递给铁氧还蛋白。其中A0是一种叶绿素a, A1是一种醌,称为叶绿醌(或维生素K1)。而FeSx、FeSA、FeSB都是铁-硫中心,可分别简称写成FX、FA、FBā。在PSⅠ的电子传递中,P700释放的电子被传递给铁氧还蛋白,同时从质体蓝素中接收一个低能电子得以补充。PSⅠ参与的电子传递路线是:

质体蓝素(Cu2+)→P700→:A0→A1→FeSx→FeSA→FeSB →铁氧还蛋白 11. 什么是非循环式电子传递?可分为几个阶段?

答: 在这种方式中,电子从水开始,经PSⅡ、质体Q、PC、复合物b6/f、PSⅠ、Fd,最后传递给NADP+, 这种方式又称为线性电子流, 或Z型路线。

可以将线性电子流分为四个阶段:①电子从PSⅡ的P680传递给PQ,生成PQH2;②水光解释放的电子经Mn传递给PSⅡ的P680+;③电子从PQH2经复合物b6/f传递给质体蓝素(PC),即电子从PSⅡ传递给PSⅠ;④电子经P700+传递给铁氧还蛋白(Fd),最后在铁氧还蛋白-NADP+还原酶的作用下,电子被NADP+接收。

12. 什么是循环式电子传递? 对光合作用有什么意义?

答: 在循环式电子传递途径中,被传递的电子经PSⅠ传递给Fd之后,不是进一步传递给NADP+,而是重新传递给细胞色素b6/f复合物,再经PC又回到PSⅠ,形成了闭路循环。

造成循环式电子流的主要原因是NADP+的浓度不足,或者说NADPH的浓度过高,所以Fd只能将电子传回给Cyt b6/f。这种电子流对光合作用具有重要的调节作用,主要是调节光反应中合成的ATP与还原的NADPH的比值,因为在暗反应中,固定CO2时既需要ATP也需要NADPH,二者间应有一个合适的比例,保持平衡。

13.在光合作用的光反应中, 类囊体膜两侧的H+质子梯度是如何建立的?

答: 在叶绿体进行的光反应中,类囊体的膜在进行电子传递的同时,会在类囊体膜两侧建立H+质子梯度。类囊体膜两侧H+质子梯度的建立,主要有三种因素:①首先是水的光解,在释放4个电子、一分子O2的同时,释放4个H+。水的裂解是在类囊体的腔中进行的,所以水的裂解导致类囊体腔中H+浓度的增加;②Cyt b6/f复合物具有质子泵的作用,当P680将电子传递给PQ时,从基质中摄取了两个H+,形成PQH2,传递四个电子,则要从基质中摄取四个H+。当PQH2将电子传递给Cyt b6/f复合物时,两分子PQH2的四个H+全被泵入类囊体的腔,叶绿体腔中H+浓度降低的同时,类囊体腔中H+浓度进一步提高;③当电子最后传递给NADP+时,需从基质中摄取两个H+质子将NADP+还原成NADPH,这样又降低了基质中的H+质子的浓度.其结果使类囊体膜两侧建立了H+质子电化学梯度。

14. 什么是循环式光合磷酸化?产物是什么?对光合作用有什么意义?

答: 将光合作用的循环式电子传递中建立的质子梯度与ADP的磷酸化相偶联,合成ATP的过程称为循环式光合磷酸化。

循环式光合磷酸化的产物仅为ATP, 无NADPH和分子氧。循环式光合磷酸化约占光合磷酸化的10~20%,特别是NADP+不足时,所占的比例更大, 因此它对光反应中产生的ATP和NADPH的比例具有调节作用。由于NADP+接收电子被还原时,同时需要从叶绿体基质中摄取一个H+,如果基质中NADP+浓度不高,或NADPH的浓度过高,说明NADPH与ATP的比例失调,需要加以调整。调整的机制是将电子回传给细胞色素b6/f复合物, 细胞色素b6/f复合物是一种质子泵,得到电子从而有足够的自由能将基质中的H+跨膜传递到类囊体腔,使类囊体腔中质子梯度升高,高浓度的H+质子通过CF1CF0-ATP合酶的H+通道返回叶绿体基质,从而促进了ATP的合成。其结果,调整了光反应中ATP和NADPH的比值,有利于CO2的固定。 15. 什么是光呼吸?它对植物的光合作用有什么影响?

答: 光呼吸是一种依靠光来消耗O2,放出CO2的作用。在光存在下,光呼吸降低了光合作用的效率,因为光呼吸要氧化光合作用中产生的还原型的碳原子,同时消耗了大量的能量。

Rubisco除了作为羧化酶催化将CO2添加到核酮糖1,5二磷酸,生成两分子3-磷酸甘油酸外,也

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库考研必备翟中和《细胞生物学》资料细胞要点及课在线全文阅读。

考研必备翟中和《细胞生物学》资料细胞要点及课.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/184479.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219