?93.269KJKmol?K?3?62Cigp?10.038?239.304?10T?73.358?10TJ/?mol?K?
3-12. 试求算366K 、2.026MPa 下1mol乙烷的体积、焓、熵与内能。设255K 、0.1013MPa时乙烷的焓、熵为零。已知乙烷在理想气体状态下的摩尔恒压热容
答案:1383 cm3/mol, 7772J/mol, 1.441 J/mol/k, 5055 J/mol/k.
第四章
4-2. 某二元组分液体混合物在固定
T
及
P
下的焓可用下式表示:
H?400x1?600x2?x1x2?40x1?20x2?。式中,H
单位为J/mol。试确定在该温度、压力状态下
?
?
(1)用x1表示的H1和H2;(2)纯组分焓H1和H2的数值;(3)无限稀释下液体的偏摩尔焓H1和H2的数值。 解:(1)已知H?400x1?600x2?x1x2?40x1?20x2? (A)
用x2=1- x1带入(A),并化简得:
3H?400x1?600?1?x1??x1?1?x1???40x1?20?1?x1????600?180x1?20x1 (B)
由二元溶液的偏摩尔性质与摩尔性质间的关系:
??M???M?M1?M??1?x1??M?M?x, ?? 21??x?x?1?T,P?1?T,P得:
??H???H?H1?H??1?x1??H?H?x, ?? 21???x1?T,P??x1?T,P??H?2???180?60x1 ??x1?T,P由式(B)得:?所以
223H1?600?180x1?20x13??1?x1????180?60x1???420?60x1?40x1J/mol(C)
23H2?600?180x1?20x13?x1??180?60x1????600?40x1J/mol (D)
(2)将x1=1及x1=0分别代入式(B)得纯组分焓H1和H2
H1?400J/mol H2?600J/mol
(3)H1和H2是指在x1=0及x1=1时的H1和H2,将x1=0代入式(C)中得:H1将x1=1代入式(D)中得:H2
4-10. 某二元液体混合物在固定T和P下其超额焓可用下列方程来表示:HE=x1x2(40x1+20x2).其中HE的单位
??
?
??420J/mol,
?640J/mol。
为J/mol。试求H1和H2(用x1表示)。 答案:
EE
4-12. 473K、5MPa下两气体混合物的逸度系数可表示为:ln?和组分2 的摩尔分率,试求答案:
?y1y2?1?y2?。式中y1和y2为组分1
?、f?的表达式,并求出当y1 =y2=0.5时,f?、f?各为多少? f121222n1n2n2n1n2?2n1n2ln??y1y2(1?y2)?(1?)?解:n1?n2n1?n2n1?n2(n1?n2)322?n1n2?2n1n2??[(n1?n2)2????n1???
??(nln?)??ln?1???n1??T,p,n2??????T,p,n?22222n1n2?2n22(n1n2?2n1n2)??(n1?n2)2(n1?n2)3222?2y1y2?2y2?2y1y2?4y1y2
?32y2
?f?1?1??x1p?f3?1?ln1?2y2?ln? x1p?f232?2?ln2?1?3y2ln??2y?y21(1?2y2) 同理:x2p当x1=0.5时:同理:
2?0.53?f1?y1pe?3.21Mpa
????2y1p?4.122Mpa f2dM dx2方法二:
由偏二元溶液性质和摩尔性质之间的关系(4-16a)计算:M1?M?x2?1?ln??x2ln?同理:
dln?323?(y2?y2)?y2(1?3y2)?2y2 dx2?2?ln??y1ln?以下同方法一
dln?32232?(y2?y2)?(1?y)2(1?3y2)?1?3y2?2y2?y1(1?2y2)dy2第六章
6-7:
符合第二定律
6-11: (1):-1088.6 KJ, (2) 383.09 KJ/KG, (3) 638.53 KJ/Kg. (4) 62.5 %.
6-14:
第二章
2-1.使用下述方法计算1kmol甲烷贮存在体积为0.1246m3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K方程;(3)普遍化关系式。 解:甲烷的摩尔体积V=0.1246 m3/1kmol=124.6 cm3/mol
查附录二得甲烷的临界参数:Tc=190.6K Pc=4.600MPa Vc=99 cm3/mol ω=0.008 (1) 理想气体方程
P=RT/V=8.314×323.15/124.6×10-6=21.56MPa
(2) R-K方程
R2Tc2.5a?0.42748?Pcb?0.086642.58.314?190.260.42748?64.6?106Pa3.?2m22?K0.?5mol?
2RTc8.314?190.6?53?1 ?0.08664?2.985?10m?mol6Pc4.6?10∴P?RTa ?0.5V?bTV?V?b?8.314?323.153.222??12.46?2.985??10?5323.150.5?12.46?10?5?12.46?2.985??10?5
? =19.04MPa (3) 普遍化关系式
Tr?TTc?323.1519?0.6?Z0??Z1
6 V1.9r5?VVc?124.699?1.259<2
∴利用普压法计算,Z∵ ∴
ZRT?PcPr VPVZ?cPr
RTP?6?5PV4.6?10?12.46?10Z?cPr?Pr?0.2133Pr
RT8.314?323.15
迭代:令Z0=1→Pr0=4.687 又Tr=1.695,查附录三得:Z0=0.8938 Z1=0.4623
Z?Z0??Z1=0.8938+0.008×0.4623=0.8975
此时,P=PcPr=4.6×4.687=21.56MPa
同理,取Z1=0.8975 依上述过程计算,直至计算出的相邻的两个Z值相差很小,迭代结束,得Z和P的值。
∴ P=19.22MPa
2-4.将压力为2.03MPa、温度为477K条件下的2.83m3NH3压缩到0.142 m3,若压缩后温度448.6K,则其压力为若干?分别用下述方法计算:(1)Vander Waals方程;(2)Redlich-Kwang方程;(3)Peng-Robinson
方程;(4)普遍化关系式。
解:查附录二得NH3的临界参数:Tc=405.6K Pc=11.28MPa Vc=72.5 cm3/mol ω=0.250 (1) 求取气体的摩尔体积
对于状态Ⅰ:P=2.03 MPa、T=447K、V=2.83 m3
Tr?TTc?477405.6?1.176 Pr?PPc?2.0311.28?0.18—普维法
∴B0?0.083?0.4220.422?0.083???0.2426 1.61.6Tr1.1760.1720.172?0.139??0.05194 Tr4.21.1764.2B1?0.139?BPc?B0??B1??0.2426?0.25?0.05194??0.2296 RTcZ?1?BPPVBPP??1?crRTRTRTcTr→V=1.885×10-3m3/mol
∴n=2.83m3/1.885×10-3m3/mol=1501mol
对于状态Ⅱ:摩尔体积V=0.142 m3/1501mol=9.458×10-5m3/mol T=448.6K (2) Vander Waals方程
27R2Tc227?8.3142?405.626?2 a???0.4253Pa?m?mol664Pc64?11.28?10b?RTc8.314?405.6?53?1 ??3.737?10m?mol68Pc8?11.28?10RTa8.314?448.60.4253?2???17.65MPa 2?5?5V?bV9.458?3.737?10???3.737?10?P?(3) Redlich-Kwang方程
R2Tc2.58.3142?405.62.5a?0.42748?0.42748?8.679Pa?m6?K0.5?mol?2 6Pc11.28?10b?0.08664P?RTc8.314?405.6?0.08664?2.59?10?5m3?mol?1 6Pc11.28?10RTa8.314?448.68.679?0.5???18.34MPa ?50.5?5?5V?bTV?V?b??9.458?2.59??10448.6?9.458?10?9.458?2.59??10(4) Peng-Robinson方程 ∵Tr∴k?TTc?448.6405.6?1.106
?0.3746?1.54226??0.26992?2?0.3746?1.54226?0.25?0.26992?0.252?0.7433
0.5???1?0.7433??1?1.1060.5???0.9247 ??T???1?k1?T??r????22R2Tc28.3142?405.62a?T??ac??T??0.45724??T??0.45724??0.9247?0.4262Pa?m6?mol?2 6Pc11.28?10b?0.07780RTc8.314?405.6?53?1 ?0.07780??2.326?10m?mol6Pc11.28?10∴P?a?T?RT ?V?bV?V?b??b?V?b?8.314?448.60.4262??9.458?2.326??10?59.458??9.458?2.326??10?10?2.326??9.458?2.326??10?10?
?19.00MPa
Vr?VVc?9.458?10?57.25?10?5?1.305<2 适用普压法,迭代进行计算,方法同1-1(3)
(5) 普遍化关系式 ∵
2-7:答案: 3cm
第三章
3-3. 试求算1kmol氮气在压力为10.13MPa、温度为773K下的内能、焓、熵、CV、Cp和自由焓之值。假设氮气服从理想气体定律。已知:
(1)在0.1013 MPa时氮的Cp与温度的关系为Cp(2)假定在0℃及0.1013 MPa时氮的焓为零;
(3)在298K及0.1013 MPa时氮的熵为191.76J/(mol·K)。 答案:8272KJ/Kmol, 14703 KJ/Kmol, 181.4 J/Kmol/K 22.13 KJ/Kmol/K, 30.45 J/Kmol/K, -125507 KJ/Kmol
3-8. 试估算纯苯由0.1013 MPa、80℃的饱和液体变为1.013 MPa、180℃的饱和蒸汽时该过程的?V、?H和?S。已知纯苯在正常沸点时的汽化潜热为3.733 J/mol;饱和液体在正常沸点下的体积为95.7 cm3/mol;定压摩尔热容Cpig?27.22?0.004187TJ/?mol?K?;
?16.036?0.2357TJ/?mol?K?;第二维里系数B=-78?1?103???T。 3?cm/mol?2.4解:1.查苯的物性参数:Tc=562.1K、Pc=4.894MPa、ω=0.271 2.求ΔV 由两项维里方程
2.4?PVBPP??1?3Z2??1??1???78??10??
RTRTRT??T????2.4??1.013?106?13??1??78?10?????0.8597 68.314?10?453??453????ZRT0.8597?8.314?453??3196 .16cm3molP1.013
?V?V1?V2V2?
3 mol?V?V2?V1?3196.16?95.7?3100.5cm?H??HV?(-H)??H??H?H2?S??SV?(?S1)??S??S?S2RR1idPidT??RR
idPidT??
3.计算每一过程焓变和熵变
(1)饱和液体(恒T、P汽化)→饱和蒸汽 ΔHV=30733KJ/Kmol
ΔSV=ΔHV/T=30733/353=87.1 KJ/Kmol·K (2)饱和蒸汽(353K、0.1013MPa)→理想气体 ∵ T 353
Tr?TC?562.1?0.628Pr?P0.1013??0.0207PC4.894点(Tr、Pr)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。 由式(3-61)、(3-62)计算 ∴
??dB0B0??dB1B1??H1R?-PrTr??????????RTcdTTdTr??rTr????r=-0.0807?-0.0207?0.628????2.2626?1.2824??0.271?8.1124?1.7112???H1R??0.0807?8.314?562.1?-377.13KJKmol?dB0S1RdB1??-Pr???RdTdTr??r? ∴
?-0.0207?2.2626?0.271?8.1124??-0.09234S1R?-0.09234?8.314?0.7677KJKmol?Kid?H??CPdTT1idPT2(3)理想气体(353K、0.1013MPa)→理想气体(453K、1.013MPa)
??453353?16.036?0.235T?dT0.23574532?3532??2?16.036?453?353???11102.31KJKmolT2
?S????453idT1idCPPdT?Rln2TP11.013?16.036??0.2357dT?8.314ln??3530.1013 ?T?453?16.036ln?0.2357?453?353??19.1353?8.47KJKmol?K(4)理想气体(453K、1.013MPa)→真实气体(453K、1.013MPa)
Tr?453?0.806562.1Pr?1.013?0.20704.894点(Tr、Pr)落在图2-8图曲线左上方,所以,用普遍化维里系数法进行计算。 由式(3-61)、(3-62)计算 ∴
??dB0B0??dB1B1??HR?-TrPr??????????RTcdTTdTr??rTr????r?-0.806?0.2070??1.1826?0.5129?0.271?2.2161?0.2863????-0.3961?dB0SRdB1??-Pr????RdTdTr??r?-0.2070?1.1826?0.271?2.2161??-0.3691RS2?3.0687KJKmol?KRH2?1850.73KJKmol4.求 ?H,?SR?H??HV?(?H1)??H??H?H2idid?S??SV?(?S1)??SP??STRidPidT???40361.7KJKmol??S?RR2
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库热力学作业题答案在线全文阅读。
相关推荐: