2016~2017学年度第一学期槐荫区九年级数学调研测试题( 2017.1)
本试题分试卷和答题卡两部分.第1卷共2页,满分为36分,第II卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.
第Ⅰ卷(选择题共36分)
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只
有一项是符合题目要求的.) 1.点(一1,一2)所在的象限为
A.第一象限 B.第二象限 c.第三象限 D.第四象限 k
2.反比例函数y=x的图象生经过点(1,-2),则k的值为 A.-1 B.-2 C.1 D.2
3.若y= kx-4的函数值y随x的增大而减小,则k的值可能是下列的 A.-4 B.0 C.1 D.3
4.在平面直角坐标系中,函数y= -x+1的图象经过 A.第一,二,三象眼 B.第二,三,四象限 C.第一,二,四象限 D.第一,三,四象限
5.如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为 A.80° B.60° C.50° D.40°
6.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα= A.1 B.1.5 C.2
7.抛物线y=-3x2-x+4与坐标轴的交点的个数是
A.3 B.2 C.1 D.0
m
8.在同一平面直角坐标系中,函数y=mx+m与y=-x (m≠0)的图象可能是
2
9.如图,点A是反比例函数y=x(x>0)的图象上任意一点,AB//x轴,交反比例函数y=3
-x的 图象于点B,以AB为边作?ABCD,其中C、D在x轴上,则S?ABCD为 A. 2 B. 3 C. 4 D. 5
10.如图,在平面直角坐标系中,⊙O的半径为1,则直线y=x一2与⊙O的位置关系是 A.相离 B.相切 C.相交 D.以上三种情况都有可能
11.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图 所示,若小球在发射后第2秒与第6秒时的高度相等,则下列时刻中小球的高度最高的是 A.第3秒 B.第3.9秒 C.第4.5秒 D.第6.5秒
12.如图,将抛物线y=(x—1)2的图象位于直线y=4以上的部分向下翻折,得到新的图像,若直线y=-x+m与新图象有四个交点,则m的取值范围为 4343
A.3<m<3 B.4<m<7 C.3<m<7 D.4<m<3
第Ⅱ卷(非选择题共84分)
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在答题卡的横线上.) 13.直线y=kx+b经过点(0,0)和(1,2),则它的解析式为_____________
14.如图,A、B、C是⊙O上的点,若∠AOB=70°,则∠ACB的度数为__________
15.如图,己知点A(O,1),B(O,-1),以点A为圆心,AB为半径作圆,交x轴的正半
轴于点C.则∠BAC等于____________度.
112
16.如图,在平面直角坐标系中,抛物线y=2x经过平移得到抛物线y=2x2-2x,其对称轴
与两段抛物线弧所围成的阴影部分的面积为______________
ab
17.如图,已知点A、C在反比例函数y=x(a>0)的图象上,点B、D在反比例函数y=x(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a-b的值是________________
18.如图所示,⊙O的面积为1,点P为⊙O上一点,令记号【n,m】表示半径OP从如图所示的位置开始以点O为中心连续旋转n次后,半径OP扫过的面积.旋转的规则为:m
第1次旋转m度;第2次从第1次停止的位置向相同的方向再次旋转2度:第3次从第
m
2次停止的位置向相同的方向再次旋转4度;第4次从第3次停止的位置向相同的方向再m3
次旋转8度……依此类推.例如【2,90】=8,则【2017, 180】=_______________
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.)19.(本小题满分6分)
(1)计算sin245°+cos30°?tan60°
(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.
20.(本小题满分6分)
如图,⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M, OM∶OC=3∶5. 求AB的长度.
21.(本小题满分6分)
如图,点(3,m)为直线AB上的点.求该点的坐标.
22.(本小题满分7分)
如图,在⊙O中,AB,CD是直径,BE是切线,连结AD,BC,BD. (1)求证:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度数.
23.(本小题满分7分)
某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.求当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
24.(本小题满分8分)
如图所示,某数学活动小组要测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡角∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.74,
cos48°≈0.67, tan48°≈l.ll, 3≈1.73)
25.(本小题满分8分)
如图,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,点D为对角线OB的中k
点,点E(4,n)在边AB上,反比例函数y=x(k≠0)在第一象限内的图象经过点D、E,且tan1
∠BOA=2.
(1)求边AB的长;
(2)求反比例函数的解析式和n的值;
(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点D与点F重合,折痕分别与x、y轴正半轴交于H、G,求线段OG的长
26.(本小题满分9分)
3
如图,抛物线y=3(x2+3x一4)与x轴交于A、B两点,与y轴交于点C. (1)求点A、点C的坐标, (2)求点D到AC的距离。
(3)看点P为抛物线上一点,以2为半径作⊙P,当⊙P与直线AC相切时,求点P的横坐标.
27.(本小题满分9分)
(1)如图l,Rt△ABD和Rt△ABC的斜边为AB,直角顶点D、C在AB的同侧, 求证:A、B、C、D四个点在同一个圆上.
(2)如图2,△ABC为锐角三角形,AD⊥BC于点D,CF⊥AB于点F,AD与CF交于点G,连结BG并延长交AC于点E,作点D关于AB的对称点P,连结PF. 求证:点P、F、E三点在一条直线上.
(3)如图3,△ABC中,∠A=30°,AB=AC=2,点D、E、F分别为BC、CA、AB边上任意一点,△DEF的周长有最小值,请你直接写出这个最小值.
九年级数学试题参考答案与评分标准
一、选择题: 题号 答案 1 C 2 B 3 A 4 C 5 D 6 C 7 A 8 A 9 D 10 B 11 B 12 D 二、填空题: 13. y=2x 14. 35 15. 60 16.4 17. 6 18.
1或22017?1 1?2017222017三、解答题:
19.(1) 解:sin245??cos30??tan60? =
·············································································· 1分 223()??322
= 13 ··························································································· 2分? 22=2 ································································································· 3分
(2)解:∵∠B=90°=30° ················································· 1分 -∠A=90°-60°tanB=ACAC ················································································ 2分
?BC3tanB=3tan30°=3×3=3. ····················································· 3分 ∴AC=3·
320. 解:连接OB,·············································································· 1分 ∵⊙O的直径CD=10,
······················································································· 2分 ∴OC=5, ·
又∵OM︰OC=3︰5,
······················································································ 3分 ∴OM=3, ·
∵AB⊥CD,且CD为⊙O的直径,
················································ 4分 ∴△BOM是直角三角形,且AB=2BM; ·在Rt△BOM中,OB=5,OM=3,
···················································· 5分 ∴BM=OB2?OM2?52?32?4, ·
··················································································· 6分 ∴AB=2BM=8
21. 解:设直线AB的解析式为y?kx?b
········································· 1分 由图象可知,直线AB过点(-1,2)和(-2,0) ·
··············································································· 2分 ∴2??k?b ·
???0??2k?b(1)-(2)得k=2,
························································ 3分 把k=2代入(1)得2=-2+b,∴b=4 ·∴k?2
???b?4····························································· 4分 ∴直线AB的解析式为y=2x+4 ·
3+4=10 ······································································ 5分 当x=3时,y=2×
···································································· 6分 ∴该点坐标为(3,10) ·
22.(1)证明:∵AB、CD为⊙O直径
································································ 1分 ∴ ∠ADB=∠CBD=90°, ·
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库山东省济南市槐荫区2024届九年级上学期期末考试数学试题(附答案)在线全文阅读。
相关推荐: