标 题 第十一章 全等三角形 11.1 全等三角形 1.知识与技能: 领会全等三角形对应边和对应角相等的有关概念. 教 学 2.过程与方法:经历探索全等三角形性质的过程,能在全等三角形中正确找出对应边、对应角. 目 标 3.情感、态度与价值观:培养观察、操作、分析能力,体会全等三角形的应用价值. 1.重点:会确定全等三角形的对应元素. 教学2.难点:掌握找对应边、对应角的方法. 重难(1)全等三角形对应角所对的边是对应边,两个对应点 3.关键:找对应边、对应角有下面两种方法:角所夹的边是对应边;(2)对应边所对的角是对应角,?两条对应边所夹的角是对应角. (一)、动手操作,导入课题 1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,?思考得到的图形有何特点? 2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,?思考得到的图形有何特点? 【学生活动】动手操作、用脑思考、与同伴讨论,得出结论. 【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形. 学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心. 教学【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完过程 全重合.这样的两个图形叫做全等形,用“≌”表示. 概念:能够完全重合的两个三角形叫做全等三角形. 【教师活动】在纸版上任意剪下一个三角形,要求学生手拿一个三角形,做如下运动:平移、翻折、旋转,观察其运动前后的三角形会全等吗? 【学生活动】动手操作,实践感知,得出结论:两个三角形全等. 【教师活动】要求学生用字母表示出每个剪下的三角形,同时互相指出每个三角形的顶点、三个角、三条边、每条边的边角、每个角的对边. 【学生活动】把两个三角形按上述要求标上字母,并任意放置,与同桌交流:(1)何时能完全重在一起?(2)此时它们的顶点、边、角有何特点?
1
修正栏: 【交流讨论】通过同桌交流,实验得出下面结论: 1.任意放置时,并不一定完全重合,?只有当把相同的角旋转到一起时才能完全重合. 2.这时它们的三个顶点、三条边和三个内角分别重合了. 3.完全重合说明三条边对应相等,三个内角对应相等,?对应顶点在相对应的位置. 【教师活动】根据学生交流的情况,给予补充和语言上的规范. 1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,?重合的边叫做对应边,重合的角叫做对应角. 2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,?如果本图11.1─2△ABC和△DBC全等,点A和点D,点B和点B,点C和点C是对应顶点,?记作△ABC≌△DBC. 【问题提出】课本图11.1─1中,△ABC≌△DEF,对应边有什么关系?对应角呢? 【学生活动】经过观察得到下面性质: 1.全等三角形对应边相等; 2.对应线段(边,中线,高,角平分线)相等; 3.全等三角形对应角相等; 4. 全等三角形周长、面积相等. (二)、随堂练习,巩固深化 课本P4练习. 【探研时空】 1.如图1所示,△ACF≌△DBE,∠E=∠F,若AD=20cm,BC=8cm,你能求出线段AB的长吗?与同伴交流.(AB=6) 2
2.如图2所示,△ABC≌△AEC,∠B=30°,∠ACB=85°,求出△AEC各内角的度数.?(∠AEC=30°,∠EAC=65°,∠ECA=85°) (三)、课堂总结,发展潜能 1.什么叫做全等三角形? 2.全等三角形具有哪些性质? (四)、布置作业,专题突破 :课本P4习题11.1第1,2,3,4题 教学反思 标 题 11.2.1三角形全等的判定(SSS) 1.知识与技能:了解三角形的稳定性,会应用“边边边”判定两个三角形全等. 教 学 2.过程与方法:经历探索“边边边”判定全等三角形的过程,解决简单的问题. 目 标 3.情感、态度与价值观:培养有条理的思考和表达能力,形成良好的合作意识. 1.重点:掌握“边边边”判定两个三角形全等的方法. 教学重难2.难点:理解证明的基本过程,学会综合分析法. 点 3.关键:掌握图形特征,寻找适合条件的两个三角形. (一)、设疑求解,操作感知 【教师活动】(出示教具) 问题提出:一块三角形的玻璃损坏后,只剩下如图2所示的残片,?你教学对图中的残片作哪些测量,就可以割取符合规格的三角形玻璃,与同伴交流. 过程 【学生活动】观察,思考,回答教师的问题.方法如下:可以将图1?的玻璃碎片放在一块纸板上,然后用直尺和铅笔或水笔画出一块完整的三角形.如图2,?剪下模板就可去割玻璃了.
3
修正栏: 【理论认知】 如果△ABC≌△A′B′C′,那么它们的对应边相等,对应角相等.?反之,?如果△ABC与△A′B′C′满足三条边对应相等,三个角对应相等,即AB=A′B′,BC=B′C′,CA=C′A′,∠A=∠A′,∠B=∠B′,∠C=∠C′. 这六个条件,就能保证△ABC≌△A′B′C′,从刚才的实践我们可以发现:?只要两个三角形三条对应边相等,就可以保证这两块三角形全等. 信不信? 【作图验证】(用直尺和圆规) 先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA.把画出的△A′B′C′剪下来,放在△ABC上,它们能完全重合吗?(即全等吗) 【学生活动】拿出直尺和圆规按上面的要求作图,并验证.(如课本图11.2-2所示) 画一个△A′B′C′,使A′B′=AB′,A′C′=AC,B′C′=BC: 1.画线段取B′C′=BC; 2.分别以B′、C′为圆心,线段AB、AC为半径画弧,两弧交于点A′; 3.连接线段A′B′、A′C′. 【教师活动】巡视、指导,引入课题:“上述的生活实例和尺规作图的结果反映了什么规律?” 【学生活动】在思考、实践的基础上可以归纳出下面判定两个三角形全等的定理. (1)判定方法:三边对应相等的两个三角形全等(简写成“边边边”或“SSS”). (2)判断两个三角形全等的推理过程,叫做证明三角形全等. 【评析】通过学生全过程的画图、观察、比较、交流等,逐步探索出最后的结论──边边边,在这个过程中,学生不仅得到了两个三角形全等的条件,同时增强了数学体验. (二)、范例点击,应用所学
4
【例1】如课本图11.2─3所示,△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.(教师板书) 【教师活动】分析例1,分析:要证明△ABD≌△ACD,可看这两个三角形的三条边是否对应相等. 证明:∵D是BC的中点, ∴BD=CD 在△ABD和△ACD中 ?AB?AC,??BD?CD, ?AD?AD.? ∴△ABD≌△ACD(SSS). 【评析】符号“∵”表示“因为”,“∴”表示“所以”;从例1可以看出,?证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程.书写中注意对应顶点要写在同一个位置上,哪个三角形先写,哪个三角形的边就先写. (三)、实践应用,合作学习 【问题思考】 已知AC=FE,BC=DE,点A、D、B、F在直线上,AD=FB(如图所示),要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件? 【教师活动】提出问题,巡视、引导学生,并请学生说说自己的想法. 【学生活动】先独立思考后,再发言:“还应该有AB=FD,只要AD=FB两边都加上DB即可得到AB=FD.” 【教学形式】先独立思考,再合作交流,师生互动. (四)、随堂练习,巩固深化 课本P8练习. 【探研时空】 如图所示,AB=DF,AC=DE,BE=CF,BC与EF相等吗??你能找到一对全 5
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库八年级上册数学集体备课教案在线全文阅读。
相关推荐: