2017-2018学年度第一学期期末试卷
九年级数学
(考试时间120分钟,试卷满分150分)
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰
有一项是符合题目要求的,请将正确选项前的字母代号填写在答题纸相应位置上) ...1.在下列二次根式中,与3是同类二次根式的是 A.18
B.24
C.27
D.30 2.已知正三角形的边长为12,则这个正三角形外接圆的半径是 A.23 B.3 C.33 D.43 3.等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是 A.平行四边形 B.矩形 C.菱形 D.正方形
4.老师对小丽的4次数学模拟考试成绩进行统计分析,判断小丽的数学成绩是否稳定,老师需要知道小丽这4次数学成绩的
A. 方差或标准差 B. 平均数或中位数 C.众数或频率 D.频数或众数 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC的值为 352531 A. B. C. D. 10522
6.如图,点A、C、B在⊙O上,已知∠AOB =∠ACB =α.则α的值为 A.135° B.120° C.110° D.100°
M O α α C 第6题 B
N
B l2
A 1 l1
O A (第N7分别是题) l1和l2上7.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点
的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是 ..A.MN?43 B. l1和l2的距离为2 3C.若∠MON=90°,则MN与⊙O相切 D. 若MN与⊙O相切,则AM?3 8.抛物线y=ax+bx+c上部分点的横坐标x,纵坐标y 的对应值如表所示.
x … -3 -2 -1 0 1 … 2
y … -6 [ZXXK]0 4 6 6 … 给出下列说法:①抛物线与y轴的交点为(0,6); ②抛物线的对称轴是在y轴的右侧; ③抛物线一定经过点(3,0); ④在对称轴左侧,y随x增大而减小.从表中可知,下列说法正确的个数有 A.1个
B.2个
C.3个
D.4个
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上) .......9.化简:18?8? 10.已知⊙O1的半径为2cm,⊙O2的半径为3cm,两圆的圆心距为5cm,则⊙O1和⊙O2的位置关系为
11.某种品牌的手机经过十一、十二月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x,根据题意列出的方程是 . 12.使代数式
x?3有意义的x的取值范围是 . x?4[来13.若关于x的方程x+2x+k=0有两个不相等的实数根,则k的取值范围是 . 14. 已知圆锥的底面半径为3cm,其母线长为5cm,则它的侧面积为______cm. 15.当x=5-1时,代数式x+2x-6的值是 .
2
2
216.已知3、a、4、b、5这五个数据,其中a、b是方程x?3x?2?0的两个根,则这五个数据的标准差是 .
2AFBDE第17题C
O1PO2第18题
17.如图,平行四边形ABCD中,E在AC上,AE=2EC,F在AB上,BF=2AF,如果△BEF的面积为2cm2,则平行四边形ABCD的面积为_________cm2.
18. 如图,⊙O1和⊙O2的半径为2和3,连接O1O2,交⊙O2于点P,O1O2=7,若将⊙O1绕点P按顺时针方向以30°/秒的速度旋转一周,请写出⊙O1与⊙O2相切时的旋转时间为_______秒.
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) ..............19.(8分)计算: (1)18-32+1?21208?(?1)3 ; (2) ()?2sin45??(??3.14)?322
20. (8分)解方程
(1)x2-7x+10=0 (2)解方程:x2-2x-1=0
21. (8分)某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下: 甲 乙 95 83 82 92 88 80 81 95 93 90 79 80 84 85 78 75 (1)请你计算这两组数据的平均数、中位数;
(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.
22. (8分) 已知点A(1,1)在二次函数y=x2-2ax+b图像上. (1)用含a的代数式表示b;
(2)如果该二次函数的图像与x轴只有一个交点,求这个二次函数的图像的顶点坐标.
23.(8分)如图,ABCD是围墙,AB∥CD,∠ABC=120°,一根6m长的绳子,一端拴在围墙一角的柱子上(B处),另一端拴着一只羊(E处). (1)请在图中画出羊活动的区域. E (2)求出羊活动区域的面积.(保留π)
5m C
D
4m A 7m B 24. (10分)(1)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形ABCD....是平行四边形.(写出所有情况)
关系:①AD‖BC,②AB=CD,③∠A=∠C,④∠B+∠C=180o. (2)以(1)中的一种情形进行证明:
已知:在四边形ABCD中, , ; 求证:四边形ABCD是平行四边形. B
25. (10分)如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30o,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45o.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离(3 ≈1.732,结果精确到0.1m).
A A D
C C D B E
26. (10分)如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E. (1)求证:DE⊥AC;
A(2)若∠ABC=30°,求tan∠BCO的值. F
O
C BD
27. (12分)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN. 下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明. 证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC. ∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE. (下面请你完成余下的证明过程) DA
N E
PB MC
图1
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线
A上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
N BPCM图2
(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD……X”,请你作出猜想:当∠AMN= °时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
28. (14分) 如图,抛物线y=mx―2mx―3m(m>0)与x轴交于A、B两点, 与y轴交于C点. (1)请求抛物线顶点M的坐标(用含m的代数式表示),A,B
y 两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.
C M A O B x 2
2017-2018学年度第一学期期末试卷九年级数学答案
一.C D B A B B D C
二.9. 2 10.外切 11.3200(1-x)2=2500 12. x?3或x?4 13.k<1 14.15? 15.-2 16. 2 17.9 18. 3或6或9
三.19.(1)原式=32-42+2 ····················································································· 3分
=0 ································································································· 4分
(2) 原式=9?2?21·································································· 3分 ?1??22?1·
22 =9 ········································································································ 4分 20.(1)x=2或x=5 ······························································································· 4分 12,(x?1)2?2,x?1??2 ·(2) 解:x2-2x+=························································· 2分
∴x1?1?2;x2?1?2 ·················································································· 4分 21. 解:(1) x甲=
____1(82+81+79+78+95+88+93+84)=85, ············································· 1分 81···························································· 2分 x乙=(92+95+80+75+83+80+90+85)=85. ·
8 这两组数据的平均数都是85.
这两组数据的中位数分别为83,84. ·········································································· 4分 (2) 派甲参赛比较合适.理由如下:由(1)知x甲=x乙,
____12s甲?[(78?85)2?(79?85)2?(81?85)2?(82?85)2?(84?85)2 ······························ 5分 8?(88?85)2?(93?85)2?(95?85)2]?35.512s乙?[(75?85)2?(80?85)2?(80?85)2?(83?85)2?(85?85)2 ······························ 6分 8?(90?85)2?(92?85)2?(95?85)2]?41∵x甲=x乙,s甲2?s乙2,
∴甲的成绩较稳定,派甲参赛比较合适. ···································································· 8分 22. 解:(1)因为点A(1,1)在二次函数y?x?2ax?b图像上,所以1=1-2a+b 可得b=2a ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 (2)由题意,方程x2-ax+b=0有两个相等的实数根, 所以4a2-4b=4a2-8a=0
解得a=0或a=2 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5分
2
当a=0时,y=x, 这个二次函数的图像的顶点坐标为(0,0); ┄┄┄┄┄┄┄┄┄┄6分
22
当a=2时,y=x-4x+4=(x-2), 这个二次函数的图像的顶点坐标为(2,0); 所以, 这个二次函数的图像的顶点坐标为(0,0) ,(2,0). ┄┄┄┄┄┄8分 23.
G
H
2____F
解:(1)如图,扇形BFG和扇形CGH为羊活动的区域.………………………2分 (2)S扇形BFG120?62??12?m2……………………………………………4分
360S扇形CGH60?222???m2………………………………………………6分
3603238???m2…………………………………8分 33∴羊活动区域的面积为:12??24. 已知:①③,①④,②④,③④均可,其余均不可以. ………………………………4分 已知:在四边形ABCD中,①AD∥BC,③?A??C. 求证:四边形ABCD是平行四边形. 证明:∵ AD∥BC
∴?A??B?180?,?C??D?180? ∵?A??C,∴?B??D
∴四边形ABCD是平行四边形. ……………………………………………10分
25. 解:设AB、CD的延长线相交于点E ∵∠CBE=45o CE⊥AE ∴CE=BE…………(2分) ∵CE=26.65-1.65=25 ∴BE=25
∴AE=AB+BE=30 ………………………………(4分) 在Rt△ADE中,∵∠DAE=30o 3∴DE=AE×tan30 o =30× =103 ……………(7分)
3
∴CD=CE-DE=25-103 ≈25-10×1.732=7.68≈7.7(m) ……………(9分)
答:广告屏幕上端与下端之间的距离约为7.7m ……………………(10分) (注:不作答不扣分)
(1) 26. 证明:连接OD
∵DE为⊙O的切线, ∴OD⊥DE┄┄┄┄┄┄┄┄2分 ∵O为AB中点, D为BC的中点
∴OD‖AC ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3分 ∴DE⊥AC ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4分 (2)过O作OF⊥BD,则BF=FD ┄┄┄┄┄┄┄┄┄5分 在Rt△BFO中, ∠ABC=30°
∴OF=OB, BF=
123OB ┄┄┄┄┄┄┄┄┄7分 2∵BD=DC, BF=FD,
∴FC=3BF=33OB ┄┄┄┄┄┄┄┄┄8分 2在Rt△OFC中,
1OBOF32??tan∠BCO=. ┄┄┄┄┄┄┄┄┄10分 FC339OB227. 解:(1)∵AE=MC,∴BE=BM, ∴∠BEM=∠EMB=45°, ∴∠AEM=135°,
∵CN平分∠DCP,∴∠PCN=45°,∴∠AEM=∠MCN=135°·················································· 2分
??AEM??MCN,??AE?MC,??EAM=?CMN,在△AEM和△MCN中:∵?
∴△AEM≌△MCN,··································································································· 4分 ∴AM=MN ················································································································ 5分 (2)仍然成立. ···································································································· 6分 在边AB上截取AE=MC,连接ME ·················································································· 7分 ∵△ABC是等边三角形, ∴AB=BC,∠B=∠ACB=60°, ∴∠ACP=120°. ∵AE=MC,∴BE=BM ∴∠BEM=∠EMB=60°
∴∠AEM=120°. ···································································································· 8分 ∵CN平分∠ACP,∴∠PCN=60°, ∴∠AEM=∠MCN=120°
∵∠CMN=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠BAM
∴△AEM≌△MCN,··································································································· 9分 ∴AM=MN ··············································································································· 10分
(n?2)180?(3)
n ··································································································· 12分
28. 解:(1)∵y=mx2―2mx―3m=m(x2―2x―3)=m(x-1)2―4m,
∴抛物线顶点M的坐标为(1,―4m) ······································································· 2分 ∵抛物线y=mx2―2mx―3m(m>0)与x轴交于A、B两点, ∴当y=0时,mx2―2mx―3m=0,
∵m>0,
∴x2―2x―3=0, 解得x1=-1,x,2=3,
∴A,B两点的坐标为(-1,0)、(3,0). ································································· 4分 (2)当x=0时,y=―3m, ∴点C的坐标为(0,-3m),
1∴S△ABC=×|3-(-1)|×|-3m|=6|m|=6m, ····························································· 5分
2过点M作MD⊥x轴于D,
则OD=1,BD=OB-OD=2,MD=|-4m |=4m.
∴S△BCM=S△BDM +S梯形OCMD-S△OBC 111
=BD·DM+(OC+DM)·OD-OB·OC 222
111
=×2×4m+(3m+4m)×1-×3×3m=3m, ······················································ 7分 222∴ S△BCM:S△ABC=1∶2. ···················································································· 8分 (3)存在使△BCM为直角三角形的抛物线.
过点C作CN⊥DM于点N,则△CMN为Rt△,CN=OD=1,DN=OC=3m, ∴MN=DM-DN=m, ∴CM2=CN2+MN2=1+m2,
在Rt△OBC中,BC2=OB2+OC2=9+9m2, 在Rt△BDM中,BM2=BD2+DM2=4+16m2.
①如果△BCM是Rt△,且∠BMC=90°时,CM2+BM2=BC2, 即1+m2+4+16m2=9+9m2, 解得 m=±
2
, 22. 2
2232x-2x-使得△BCM是Rt△; ··········································· 10分 22
C N M A O D B x y ∵m>0,∴m=
∴存在抛物线y=
②①如果△BCM是Rt△,且∠BCM=90°时,BC2+CM2=BM2. 即9+9m2+1+m2=4+16m2,
解得 m=±1, ∵m>0,∴m=1.
∴存在抛物线y=x2-2x-3使得△BCM是Rt△; ··················································· 12分 ③如果△BCM是Rt△,且∠CBM=90°时,BC2+BM2=CM2. 即9+9m2+4+16m2=1+m2, 1
整理得 m2=-,此方程无解,
2
∴以∠CBM为直角的直角三角形不存在.
(或∵9+9m2>1+m2,4+16m2>1+m2,∴以∠CBM为直角的直角三角形不存在.) 综上的所述,存在抛物线y=
2232x-2x-和y=x2-2x-3使得△BCM是Rt△. ··········· 14分 22
解得 m=±1, ∵m>0,∴m=1.
∴存在抛物线y=x2-2x-3使得△BCM是Rt△; ··················································· 12分 ③如果△BCM是Rt△,且∠CBM=90°时,BC2+BM2=CM2. 即9+9m2+4+16m2=1+m2, 1
整理得 m2=-,此方程无解,
2
∴以∠CBM为直角的直角三角形不存在.
(或∵9+9m2>1+m2,4+16m2>1+m2,∴以∠CBM为直角的直角三角形不存在.) 综上的所述,存在抛物线y=
2232x-2x-和y=x2-2x-3使得△BCM是Rt△. ··········· 14分 22
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库2024-2025学年靖江市九年级上数学期末试卷及答案在线全文阅读。
相关推荐: