银行挤兑的行为金融分析

来源:网络收集 时间:2025-04-27 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

研究方向:金融学

银行挤兑的行为金融分析

摘要:尽管Byrant、Diamong和Gibbons等人的模型对于挤兑对经济的危害和存款保险机制的作用不尽一致,但解释总体是成功的,后两者共同的缺陷在于不能解释占优的纯战略纳什均衡为何不一定出现。本文运用行为金融理论的经典内容指出模糊厌恶和确定效应是低效率均衡出现的主要原因,而存款保险制度能够避免模糊厌恶和确定效应发生。

关键词: 挤兑 存款保险 行为金融

银行的生存基础是社会信用,一旦存款人觉得存款的安全得不到保障,社会的信用基础发生动摇,那么不可避免的就会导致挤兑现象的发生。研究表明,银行挤兑行为与储户的心理活动密切相关,而行为金融理论作为新的研究领域恰恰为我们提供了新的工具和方法。

一、文献回顾

Bryant在1980年首次从理论上阐述了存款保险对挤兑行为所能发挥的作用,阐述了由于风险资产而引发的随机提款、负债事件以及不对称信息给金融业带来的影响,考虑到政府能采用税收调节、发行货币等不同方法来保护存款,Bryant分析了他们不同的效率、效果和成本,但是他并没有为存款保险设计大致的方案,只是赞同建立政府干预下的存款保险体系。

Diamond和Dybvig1983年基于Bryant的研究成果,提出了均衡模型。即银行业存在多个均衡状态,而存款保险的作用在于它的出现消除了银行挤兑的平衡,留下了一个没有挤兑的良性平衡。

该模型假设存在三个时期(T=0,1,2)和一种商品。每个当事人拥有相同的生产技术,在时期0投入1单位,在时期1结束时产出1单位,到时期2结束时产出R>1。这就意味着中断生产是有成本的。又假定在时期0的时候所有的消费者都是一样的,不确定自己何时消费。但是在时期1可以选择成为第一类人或第二类人。第一类人当事人只关心在时期1消费, 出现的可能性是t; 第二类人只关心在时期2消费,出现的可能性是 (1-t)。令CT表示T期内某当事人的消费,每人有一个单位禀赋。那么在信息完全情况下,第一类人两期的消费分别为1和0;第二类人两期的消费分别为0和R。

银行吸收存款,投资于生产过程,向在时期1提款的存款者承诺一个合理的回报。只要尚有资产未清算,就向排队取款者承诺支付r1= C1>1。“顺序服务约束”(sequential service constrains”)是该模型中重要的条件,它指的是存款人随机的到达银行提款,而银行支付只取决于当事人在提款队伍中占据的位置,排在后面的人有可能会面对无款可提的局面。第一

1

1*

期提款之后如果还有剩余资产,则在存款者平均分配。一方面它类似于某种债务,如果银行不破产则有固定收益;但是另一方面若银行破产则没有固定收益,并且存款者在T=2时拥有某种剩余索取权,这又使它像是一种债权和股权混合的金融工具。在这种契约下存在两种均衡,一种是挤兑均衡,另外一种是良性的最优分担均衡。

Diamond和Dybvig认为任何引起存款者预期挤兑将要发生的事情都会导致挤提现实地发生,而与银行本身的健全与否无关。因此银行必须对保持存款者的信心予以特别关注。在知道T=1时第一类人的比例的情况下,借助“终止兑换”可以保证最优条件的实现,消除银行挤兑。但是如果t为随机变量,那么“活期存款契约”就不再是最优的了,Diamond和Dybvig认为这时政府适当的干预就十分必要了,存款保险制度可以消除恐慌,避免挤兑现象的发生。

这个模型的关键在于政府把存款保险作为防止挤兑平衡的工具,在实施存款保险的情况下消除挤兑的均衡状态,使得两类人都可以得到最佳消费,实现良性均衡。但是它的前提是政府要征收最优的税金,如果T是随机的,政府征收的税金也不是最优数量,那么在实施政府存款保险时会发生税收扭曲再加上实施过程中的费用问题,有可能会导致社会福利的下降。

Diamond和Dybvig说明了银行对挤兑具有较差的免疫力以及由银行提供的储蓄契约的本质。从社会福利的角度来看,银行挤兑的成本是相当高的,如果一个银行倒闭,它只好收回所有存款,这会带来两方面的负面影响,终止生产性投资破坏了存款者之间的最优风险分担,另外一方面如果银行挤兑发生,货币系统的瓦解以及其他经济问题都会出现。

存款保险可以有效地防止挤兑平衡,原因在于银行合同实现了最优化,使得晚期消费存款人不参加挤兑。总的来说,政府存款保险的作用机理主要是在不改变原有均衡的情况下,去除了其中的一个“坏均衡”-挤兑均衡,从而保证了银行的正常经营状态。

Gibbons在Diamond和Dybvig的挤兑模型基础上,提出了一个信息完全但不完美的博弈模型。考虑两家投资者,在一家银行里每人又一笔存款D。银行将他们的存款投资于长期项目,如果在项目到期前,银行被迫清算,将会收回总额为2r资金,设D?r?D,如2果允许银行的投资到期,项目总收益额为2R,设R?D。设T?1在存款到期之前,T?2在存款到期之后。在时期1,若两个储户都提款,则每个人得到r,博弈结束;若只有一个投资者提款,则该投资者得到D,另一个得到2r?D,博弈结束;如果两个存款人均延至第2期提款,则每人得到R,博弈结束,为简单起见,将两阶段写进同一个矩阵中,可以

2

看出可能出现两个纯策略纳什均衡,即(提款,提款)和(不提款,不提款),虽然R?r,但在这一博弈中却不存在一种机制保证后一个那时均衡一定出现,因而是一个混合策略问题。

提 款 不 提 款 提 款 不 提 款 r,r D,2r?D R,R 2r?D,D 表一 Gibbons模型的支付矩阵 Gibbons模型更为简单直观,但是无论该模型还是Diamond和Dybvig的挤兑模型

都没有分析到底是什么原因引起了存款者对银行的信心产生动摇,好的纳什均衡为何在未

引入存款保险机制的情况下不一定发生,笔者试图用行为金融理论对此进行解释。

二、期望理论

1 阿莱悖论(Allais’s Paradox)

法国著名经济学家、诺贝尔奖得主阿莱1952年作了一个著名的实验,阿莱首先设计了赌局和对100人进行测试,其中:赌局A:100%的机会得到100万元。赌局B:10%的机会得到500万元,89%的机会得到100万元,1%的机会什么也得不到。调查发现,绝大多数人选择A而不是B。然后阿莱使用新赌局对这些人继续进行测试,其中:赌局C:11%的机会得到100万元,89%的机会什么也得不到。赌局D:10%的机会得到500万元,90%的机会什么也得不到。调查结果是绝大多数人选择D而非C。在前两个赌局中,根据预期效用理

u(0) (1) 论,可得到:u(100)?0.1u(500)?0.89u(100)?0.01u(100)?0.1u(500)?0.01u(0) (2) 即0.11在后两个赌局中,根据预期效用理论,可得到:

0.1u(500)?0.9u(0)?0.11u(100)?0.89u(0) (3)

u(0)?0.11u(100) (4)即0.1u(500)?0.01, (2)式与(4)式显然矛盾。

出现上述现象的原因是确定效应(Certain effect),即个人对结果确定的现象过度重视。kahneman和tversky曾经设计了两个实验:一是假设有两个赌局:第一个赌局有33%的机会得到2500元,66%的机会得到2400元,另外1%的机会什么也得不到,第二个赌局确定

3

得到2400元,问卷的结果显示有82%的参与者选择第二个赌局。第二个问题也假设有两个赌局:第一个赌局33%的机会得到2500元,67%的机会什么也得不到。第二个赌局有34%的机会得到2400元,66%的机会什么也没有。问卷的结果显示有83%的参与者选择第一个赌局。

2埃斯伯格悖论(Ellsberg’s Paradox)

1961年埃斯伯格进行了如下实验:在一个罐子中有90个球,告诉人们其中有30个红球其余的要么是黑球,要么是黄球。现随机的从中抽取一个球,并设计赌局如下:赌局A:若是红球,你得到100美元;若是其它颜色的球得到0美元。赌局B:若是黑球,你得到100美元;若是其它颜色的球得到0美元。赌局C:若是黑球,你得到0美元;若是其它颜色的球得到100美元。赌局D:若是红球,你得到0美元;若是其它颜色的球得到100美元。通过调查发现多数人在A、B之间选择A而非B;在C、D之间选择D而非C。这种选择若用主观概率计算的预期效用函数表示,则

p(red)u(100)?p(black,yellow)u(0)?p(black)u(100)?p(red,yellow)u(0) p(red)u(0)?p(black,yellow)u(100)?p(black)u(0)?p(red,yellow)u(100)

为方便推导,将效用函数标准化为:u(0)?0,因此有:

p(red)?p(black),p(black,yellow)?p(red,yellow)

)?1和p(black)?p(red,yellow)?1,所以上述两个由于p(red)?p(black,yellow不等式矛盾。埃斯伯格悖论表明人们不喜欢他们对某一博弈的概率分布不清楚,即模糊厌恶(Ambiguity averse),也就是个人在冒险时喜欢拿自己已知的概率作根据,而非未知的概率。一个人之所以愿意赌一个不确定事件,除了事件的概率之外,也考虑到它的来源。

3期望理论(Prospect Theory)

期望理论是整个行为金融理论最核心的内容,它主要通过价值函数和权值函数等形式来表达。价值函数(Value Function)是期望理论用来表示效用的概念,它与标准效用函数的区别在于它不再是财富的函数,而是获利或损失的函数。kahneman和tversky(1979)认为:在参考点以上的部分 (获利区间),价值函数上凸,表明决策者是风险爱好型;在参考点以下的部分(损失区间),价值函数下凹,表明决策者是风险厌恶型;在参考点附近,价值函数的斜率有明显变动,表明风险态度的变化对损失的感受大于获利,由风险厌恶转为风险爱好。投资者的“效用”反映在期盼理论的价值函数中,是一条中间有一拐点W0(称为参考点 )的S

4

型曲线(见图一),横轴的正半轴表示盈利、负半轴表示损失-在盈利范围内通常是凹的、在损失范围内通常是凸的、而且曲线的斜度在损失范围内比在盈利范围内要,即投资者损失时所感受到的痛苦通常远大于盈利时所获得的愉悦。

图一 价值函数

价值

损失 W0 盈利

期望理论的另一重要概念是权值函数(Weighting function)。kahneman和tversky(1979)认为人们对不同的效用值所对应的事件发生的概率的主观概率也是不一样的,按照实际概率值可以划分为极可能、很可能、很不可能、极不可能几种情况,不同情况下人们的概率评价值有着明显差异。权值函数?中,“极不可能”概率的权值为0,“极可能” 的权值为1,而对“很不可能”赋予相对较高的权值,对“很可能”赋予相对较低的权值,在“很可能”与“很不可能”之间,权值函数具有小于1的斜率。也就是说,权值函数对较高的概率指派较小的权数,而对小概率则指派较大的权数。

图二 权值函数 ?(p)

1 0.5 p

0 0.5 1

5

价值函数有以下三个重要特征:第一,价值函数是定义在相对于某个参考点的利得和损失,而不是一般传统理论所重视的期末财富或消费。参考点的决定通常是以目前的财富水平为基准,但有时不一定是如此。kahneman和tversky认为参考点可能会因为投资人对未来财富预期的不同而有不同的考虑。比如,一个对于损失不甘心的投资者可能会接受他原来不愿接受的赌局。第二,价值函数为S型的函数。在面对利得时是凹函数,面对损失时是凸函数,这表示投资者每增加一单位的利得,其增加的效用低于前一单位所带来的效用,而每增加一单位的损失,其失去的效用也低于前一单位所失去的效用。第三,价值函数,损失的的斜率比利得的陡。即投资者在相对应的利得与损失下,其边际损失比边际利得敏感。

权值函数有下列两个特性:第一,权值函数不是机率,?是p的增函数,它并不符合

?(p)?p。几率公理,也不应被解释为个人预期的程度。第二,对于几率?(p)p很小的时候,

这表示个人对于很小的事件过度重视,但是当概率p很大时,?(p)?p。这可说明个人过分注意极端的但几率很低的事件,却忽略了例行发生的事。

三、银行挤兑的行为金融模型

模型假设存在三个时期(T=0,1,2)。在第0期储户将存款存入银行,在第2期到期。在第1期储户存款尚未到期,而存款银行遭遇挤兑,面临困境。模型不计时间价值和储户资金的机会成本。由于银行的“顺序服务约束”,存款人随机地到达银行提款,而银行支付只取决于当事人在提款队伍中占据的位置,因此,本模型假设当银行不能支付储户要提取的存款本息时或者储户的恐惧消除挤兑行为结束时,第2期开始。

(一) 未引入存款保险机制的情形:此时,储户有两种选择: 1在第1期取出存款,只获得本金x;

2第1期不提取存款,延至第2期到期后再去取出存款,获得0,z(0?z?y)或y, y为本息合计总数。

假设银行在第1期能够支付储户提取存款本金,在第2期有两种结果; 1渡过危机,银行正常营业; 2破产倒闭,进行清算。

在第一种情况下银行对到期存款支付y,第二种情况下对到期存款支付z或0; 假设银行渡过危机向储户支付y的概率为p,

为银行在第2期破产向储户支付

z(0?z?x)的概率,p?q?1,0??(p)?1,0??(q)?1,并且假设银行和储户都知道

6

x,y,z,p,q。

以本金x为参考点,则V(z,p;y,q)? ?(p)v(z)??(q)v(y),(1) 当V(z,p;y,q)?v(x) (2)时,储户才不会挤兑,否则挤兑便会发生。 联立(1)式(2)式得?(p)v(z)??(q)v(y)?v(x) (3)。

为了简单起见,设v(x)?0,则v(y)?0,v(z)?0,于是银行挤兑的临界条件变为

?(p)v(z)??(q)v(y)?0,即?(p)v(z)???(q)v(y),

v(y)?(p), ??v(z)?(q)行为金融学研究发现,人们往往将资金放入不同的心理帐户 (Mental account),人们对待不同的心理帐户的风险的态度也是不一样的。投资者通常对于放入保值心理帐户的资金具有较强的风险厌恶特点,而对放入升值心理帐户的资金具有较弱的风险厌恶特点,有时侯甚至主动寻求风险。储户选择储蓄,更多地追求本金安全而非高收益,因此,其效用函数在参考点的右上方十分平缓,而在参考点右下方异常陡峭,即v'(z)远远大于v'(y)。

而且当概率p极大时,?(p)?,当p极小时,?(p)?p,所以当p极小、q极

大时,?(p)v(z)??(q)v(y)?0时,pz?qy?x,所以尽管pz?qy?x,但如果不满足

?(p)v(z)??(q)v(y)?0,照样发生挤兑。这就是说即使经营状况很好,破产清算也能使

储户与其偿付金额大于本金的银行也有可能被挤兑。这足以解释为什么占有均衡并不一定出现。

以上分析仅仅是基于对给定概率p,q的赌局的分析所得出的储户不挤兑的条件,但事实上储户可能并不知道z、p和q。假设被挤兑银行有两种类型:第1种是经过救助可以渡过危机正常营业的,第2种是经过救助也难免归于失败或根本无力救助或得不到救助的。对于银行的类型以及政府救助的态度和努力程度,储户并不完全清楚,从而导致模糊厌恶和确定效应发生。

储户的存款属于追求安全性的心理账户,同时以本金为参考点,则储户会把利息视为收益,由于储户觉得对于同等金额本金损失带来的痛苦远大于利息收益带来的愉悦,因此储户对本金的安全更为重视,而对于概率p、q和破产清算所能得到的金额z等不确定信息予以忽视,这也正是一些偶然性事件都可能引发挤兑的原因。

由于确定效应和模糊厌恶,使得、存款人对能够保证本金安全的选择更为青睐。Diamond

7

和Dybvig以及Gibbons模型中(不挤兑,不挤兑)不一定出现的原因即在于此。

(二)引入存款保险机制以后的情况

假设存款保险为全额保险(因为储户可将大额化为小额以获取保险以外,一些国家还在银行挤兑风潮中实施过渡性的全额保险。),银行渡过危机的概率为p,银行破产由存款保险理赔的概率为q,p?q?1,即使储户不知道p,q的具体值,但是储户知道p?q?1,而且V(y,p;y,q)?v(y),而v(y)?v(x),因此,引入存款保险机制后,成功地克服了模糊厌恶和确定效应的发生,阻止了低效率均衡的出现,所以存款保险可以避免储户尤其是小额储户挤兑发生。

在存款保险制度建立之前,银行挤兑往往始于小额存款人,而存款保险制度更倾向于优先保护中小储户的利益,所以存款保险制度对于减少中小储户的挤兑行为,作用更加明显。例如,1974年美国富兰克林挤兑案中,尽管其它的商业银行则拒绝对其进行援助甚至交易,但由于受联邦存款保险保护的小额存款者并未参与挤兑而度过了难关。

四、隐性存款保险与银行救助

在没有引入存款保险制度之前,政府、中央银行和同业的救助充当了隐性的银行存款保险的功能。越是经营状况好的银行,被挤兑的可能性越小,获得救助的可能性越大。所以在存款保险制度正式确立之前,对银行等金融机构的救助原理与存款保险是相似的,由央行、政府和同业银行充当信用保障,保证存款人在银行破产的情况下,存款本息能够最大限度地得到补偿。

在我国现代银行成立之前(19世纪末期之前),上海等地的钱庄实际上是无限责任公司,钱庄股东多位家境殷实的富商,一旦钱庄破产,钱庄股东们变卖家产偿还债务,这些股东的财产充当了隐性存款保险机制。这些钱庄向股东的商号发放贷款,同时商号的闲置资金存在钱庄生利。但反过来,一旦这些钱庄的大股东生意失败,钱庄往往都受到牵连,如1883年胡雪岩投机生丝失败,就引发了全国性的金融风潮,可见这种隐性的存款保险是十分脆弱的。

1999年,广信破产案中,广东省政府从财政中拿出5.9亿元资金委托中国银行广东省分行优先向个人储户支付存款。而在此之前的海南发展银行破产事件中,中央政府为了保证一般存款者的利益,也专门提供了40亿资金用来偿还普通存款者的存款,我国政府的代偿行为也起到了银行存款保险的作用。

此外,对商业银行的救助,很多时候也取决于政府和中央银行的态度,如英国19世纪两宗著名的银行倒闭案中,英格兰银行采取了不同的方式,取得了截然相反的结果。1866

8

年夏,英国OG责任有限公司(Overend,Gureney and company LTD)遭受挤兑,其股票价格下跌,于1866年5月10日向英格兰银行求援被拒绝,于当天下午宣布倒闭。多米诺骨牌效应引发相关银行的挤兑,甚至波及英格兰银行,OG公司倒闭案表明中央银行在金融风潮中采取适当措施履行最后贷款人职责的必要性。

1890年巴林兄弟公司(Baring Brothers and company)在拉美投资失败导致亏损,公司面临严重财务危机。但是由于英格兰银行的及时介入和救援,使巴林兄弟公司通过重组度过了危机,并未引发大规模的挤兑和银行倒闭,究其原因,除了巴林银行自身以财务稳健著称之外,英格兰银行和伦敦的各大商人银行对巴林银行的援助功不可没。

而在1995年巴林银行倒闭案中,英格兰银行认为关闭巴林银行不会危及整个金融体系稳定,所以在与财政部协商后,作出绝不动用财政资金进行救助的决定。结果巴林银行没能继续19世纪末的好运,延续233年之后 ,以1英镑的价格易手他人。

结束语:

储户的挤兑行为并非是完全理性的,因此用新古典经济理论并不能完全解释挤兑的全部内容,尤其是低效率均衡的出现,但是恰恰可以用行为金融理论来解释,笔者认为信息的不对称而引发的存款人非理性行为是挤兑的诱因,而模糊厌恶和确定效应则是低效率纳什均衡出现的原因。

Byrant认为,由于银行的流动性资产不能清偿活期存款,存款人争相提款以减少损失,导致挤兑。由于价格下跌,引起质押物的损失,使银行面临倒闭。Diamond和Dybvig认为银行挤兑是由于其它改变引起的,而这种预期可以建立在任何事物上。银行挤兑的危害在于银行提前收回贷款,生产被迫中断,对经济造成直接损害。

笔者认为,银行制度本身存在先天缺陷。由于部分准备制度,面对挤兑,银行资产的流动性必然不足,除非有有效的措施(存款保险、政府、同业救助)来稳定信心,否则即使经营状况较好的银行也可能破产。而实际上,绝大多数银行挤兑和倒闭事件都事出有因,即被挤兑银行大多是投资决策失误,造成较大损失,成为引发挤兑事件的导火索。因此,我国要早日建立健全存款保险制度,才能增强银行系统风险防御能力,加快国有银行改革。 参考文献:

[1]查里斯·P·金德尔伯格(美)著(朱隽,叶翔译 ). 经济过热、经济恐慌及经济崩溃——金融危机史 [M].北京:北京大学出版社, 2000.

[2] 常巍,任少华. 戴蒙德-迪布维格银行挤兑模型述评[J]. 经济学动态,2004,(1). [3] 李保明. 效用理论与纳什均衡选择-对协调与合作问题的探讨[M].北京:经济科学出版

9

社,2003.

[4] 梁 媛. 存款保险中的时间不一致问题[J].江西财经大学学报,2004,(2). [5] 罗伯特·吉本斯(高峰译).博弈论基础[M].北京:中国社会科学出版社,1999. [6] 阚景阳.我国建立显性存款保险制度的思考与分析[J].江淮论坛,2005,(2). [7] 易宪容,赵春明.行为金融学[M].北京:社会科学文献出版社,2004.

[8] Byrant(1980).“A model of reserves, bank Runs,deposit Insuranc”[J].Journal of Banking&Financ,(Dec)335-44.

[9] Calomiris(1990). “Is deposit insurance Necessary? A historical perspective”[J].Journal of Economic history,50.

[10] Diamond,DyByig(1983).“Bank Runs,Deposit Insurance,and Liquifity”[J].Journal of Political Economy (91).

[11] Duan,YU(1994).“Forbearance and Pricing Deposit Insurance in a Multiperiod Framework”[J]. Jouranl of Risk and insurance,(61).

[12] Garcia Gillian(1996).“Deposit Insurance: obtaining the benefits and avoiding the pitfalls”[J]. IMF Working Paper,No 96/82.

[13] Kahneman,Tversky1979). “Prospect theory: An analysis of decision under risk.”[J]. Econometrica, 65-91.

[14] Thaler(1999). “The end of behavioural finance” [J].The journal of financial analysist ,(Dec) 12-17.

10

研究方向;金融学

银行挤兑的行为金融分析

摘要:

尽管Diamong、Gibbons等经济学家关于挤兑和存款保险制度的模型有一定道理,但均不能解释占优的纯战略纳什均衡为何不一定出现。本文运用行为金融理论的经典内容对此进行解释,得出确定效应和模糊厌恶是导致低效率均衡出现的主要原因。

关键词: 挤兑 存款保险 行为金融

The behavioural finance analysis of the bank run

Summary:Though the models of economists,such as Diamong and Gibbons, about the

bank run and the deposits insurance system were rational,all of them can’t explain why the advantageous Pure Strategy Nash Equilibrium can’t always take place. In this paper,the author stroved to solve this problem according to the classical theories of the behavioural finance,and came to the conclision that the certain effect and the ambiguity averse were the reasion of the low effective equilibrium.

Key words: bank run deposits insurance behavioural finance

11

研究方向;金融学

银行挤兑的行为金融分析

摘要:

尽管Diamong、Gibbons等经济学家关于挤兑和存款保险制度的模型有一定道理,但均不能解释占优的纯战略纳什均衡为何不一定出现。本文运用行为金融理论的经典内容对此进行解释,得出确定效应和模糊厌恶是导致低效率均衡出现的主要原因。

关键词: 挤兑 存款保险 行为金融

The behavioural finance analysis of the bank run

Summary:Though the models of economists,such as Diamong and Gibbons, about the

bank run and the deposits insurance system were rational,all of them can’t explain why the advantageous Pure Strategy Nash Equilibrium can’t always take place. In this paper,the author stroved to solve this problem according to the classical theories of the behavioural finance,and came to the conclision that the certain effect and the ambiguity averse were the reasion of the low effective equilibrium.

Key words: bank run deposits insurance behavioural finance

11

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库银行挤兑的行为金融分析在线全文阅读。

银行挤兑的行为金融分析.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/211299.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219