浙教版八年级数学下册第5章《特殊平行四边形》检测题(含答案)

来源:网络收集 时间:2025-06-18 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

第5章检测题

(时间:100分钟 满分:120分)

一、精心选一选(每小题3分,共30分)

1.下列命题:①平行四边形的对边相等;②对角线相等的四边形是矩形;③正方形既是轴对称图形,又是中心对称图形;④一条对角线平分一组对角的平行四边形是菱形.其中真命题有( C )

A.1个 B.2个 C.3个 D.4个 2.矩形具有而菱形不具有的性质是( B )

A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等

3.求证:菱形的两条对角线互相垂直.

已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是( B )

A.③→②→①→④; B.③→④→①→②; C.①→②→④→③; D.①→④→③→② 4.若顺次连结四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( C ) A.矩形 B.菱形

C.对角线互相垂直的四边形 D.对角线相等的四边形

5.在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:甲:连结AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连结AN,CM,则四边形ANCM是菱形.

乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连结EF,则四边形ABEF是菱形.

根据两人的作法可判断( C )

A.甲正确,乙错误;B.乙正确,甲错误;C.甲、乙均正确 ;D.甲、乙均错误

第5题图 第6题图 第7题图

6.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连结EF.若EF=3,BD=4,则菱形ABCD的周长为( C )

A.4 B.46 C.47 D.28

7.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( D )

A.(3,1) B.(2,1) C.(1,3) D.(2,3)

8.一张矩形纸片ABCD,已知AB=3,AD=2,小明按如图步骤折叠纸片,则线段DG长为( A )

A.2 B.22 C.1 D.2

第8题图 第9题图 第10题图

9.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( D )

5556A. B. C. D. 4235

10.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC,DC分别交于点G,F,H为CG的中点,连结DE,EH,DH,FH.下列结论:①EGAE2=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,

AB3其中结论正确的有( D )

A.1个 B.2个 C.3个 D.4个 二、细心填一填(每小题4分,共24分)

11.如图,菱形ABCD中,对角线AC,BD相交于点O,若再补充一个条件能使菱形

ABCD成为正方形,则这个条件是__∠ABC=90°或AC=BD__.(补充一个即可)

112.边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为____.

4

第11题图 第12题图 第13题图

13.如图,正方形ABCD的边长为4,E是BC边的中点,P是对角线BD上一动点,则PE+PC的最小值是__25__.

14.如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500 m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100 m,则小聪行走的路程为__4600__m.

15.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是__②③④___.(填序号)

第14题图 第15题图 第16题图

16.如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=3,BC=5,则CF的取值范围为__≤CF≤3__.

三、耐心做一做(共66分)

17.(6分)如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为点C′,若∠ADC′=20°,求∠BDC的度数.

53

解:设AD,BC交于点E,证△ABE≌△C′DE得∠ABE=∠ADC′=20°,∴∠CBC′=

1

90°-∠ABE=70°,∴∠CBD=∠CBC′=35°,∴∠BDC=55°

2

18.(6分)如图,是一个菱形的花坛,花坛的周长为40 m,沿着花坛相对的两个顶点分别修建了两条小路,这两条小路的长度之比为3∶4,请你计算这个花坛的面积是多少?(小路的宽度忽略不计)

解:设两条小路将于点O,则AB=40 m÷4=10(m),又∵AC∶BD=3∶4,,∴OA∶OB=3∶4,设OA=3x m,OB=4x m,则由勾股定理得(3x)2+(4x)2=102,解得x=2,∴OA1=6 m,OB=8 m,∴S△OAB=×OA×OB=24(m2),∴S菱形ABCD=4S△OAB=96 m2

2

19.(6分)如图,在正方形ABCD中,E,F分别为边AD和CD上的点,且AE=CF,连结AF,CE交于点G.求证:AG=CG.

证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,

?

?∠AGE=∠CGF,∴△AGE≌△CGF(AAS),∴AG=CG ?AE=CF,

∠DAF=∠DCE,

20.(8分)如图,在△ABC中,点D是BC的中点,点F是AD的中点,过点D作DE∥AC,交CF的延长线于点E,连结BE,AE.

(1)求证:四边形ACDE是平行四边形;

(2)若AB=AC,试判断四边形ADBE的形状,并证明你的结论.

解:(1)证△AFC≌△DFE得CF=EF,又AF=DF,∴四边形ACDE是平行四边形 (2)四边形ADBE是矩形,由(1)知,四边形ACDE是平行四边形,∴AE∥BC,AE=CD=BD,∴四边形ADBE是平行四边形,又AB=AC,CD=BD,∴AD⊥BC,∴四边形ADBE是矩形

21.(8分)如图,在?ABCD中,AE⊥BC于点E,延长BC至点F使CF=BE,连结AF,DE,DF.

(1)求证:四边形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的长.

解:(1)∵CF=BE,∴CF+EC=BE+EC,即EF=BC.∵在?ABCD中,AD∥BC且AD=BC,∴AD∥EF且AD=EF.∴四边形AEFD是平行四边形.∵AE⊥BC,∴∠AEF=90°.∴四边形AEFD是矩形

(2)∵四边形AEFD是矩形,DE=8,∴AF=DE=8.∵AB=6,BF=10,∴AB2+AF2

11=62+82=100=BF2.∴∠BAF=90°.∵AE⊥BF,∴△ABF的面积=AB·AF=

22AB·AF6×824

BF·AE.∴AE=== BF105

22.(10分)如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止;同时点Q从点B出发向点C运动,运动到点C即停止.点P,Q的速度的速度都是1 cm/s,连结PQ,AQ,CP,设点P,Q运动的时间为t(s).

(1)当t为何值时,四边形ABQP是矩形? (2)当t为何值时,四边形AQCP是菱形? (3)分别求出(2)中菱形AQCP的周长和面积.

解:(1)当四边形ABQP是矩形时,BQ=AP,即:t=8-t,解得t=4

(2)当AQ=CQ时,四边形AQCP是菱形,即t2+42=8-t时,四边形AQCP为菱形,解得t=3

1

(3)当t=3时,CQ=5,则周长为4CQ=20 (cm),面积为4×8-2××3×4=20(cm2)

2

23.(10分)在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图①,他连结AD,CF,经测量发现AD=CF.

(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图②,试判断AD与CF还相等吗?说明你的理由;

(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图③,请你求出CF的长.

解:(1)AD=CF,证△AOD≌△COF(SAS) (2)连结DF交OE于M,DF=OD2+OF2=2,∴DM=OM=1,∴AD=12+(1+3)2=17,由(1)得CF=AD=17

24.(12分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合).以AD为边作正方形ADEF,连结CF.

(1)如图1,当点D在线段BC上时,求证:①BD⊥CF.②CF=BC-CD.

(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;

(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变:①请直接写出CF,BC,CD三条线段之间的关系.②若连结正方形对角线AE,DF,交点为O,连结OC,探究△AOC的形状,并说明理由.

解:(1)①∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=45°,∴∠ACF+∠ACB=90°,∴BD⊥CF;②由①△BAD≌△CAF可得BD=CF,∵BD=BC-CD,∴CF=BC-CD

(2)与(1)同理可得BD=CF,∴CF=BC+CD

(3)①与(1)同理可得,BD=CF,∴CF=CD-BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=135°,∴∠FCD=∠ACF-∠ACB1=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=DF,∵在

21

正方形ADEF中,OA=AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形

2

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库浙教版八年级数学下册第5章《特殊平行四边形》检测题(含答案)在线全文阅读。

浙教版八年级数学下册第5章《特殊平行四边形》检测题(含答案).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/214151.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219