2.设X、Y分别是标准形式的原问题与对偶问题的可行解,则 C 。
3.对偶单纯形法的迭代是从_ A_开始的。
A.正则解 B.最优解 C.可行解 D.基本解
4.如果z。是某标准型线性规划问题的最优目标函数值,则其对偶问题的最优目标函数值w﹡
A。
﹡﹡ ﹡﹡ ﹡﹡ ﹡﹡
A.W=ZB.W≠ZC.W≤ZD.W≥Z 5.如果某种资源的影子价格大于其市场价格,则说明_ B
A.该资源过剩B.该资源稀缺 C.企业应尽快处理该资源D.企业应充分利用该资源,开僻新的生产途径 三、多选题
1.在一对对偶问题中,可能存在的情况是ABC。
A.一个问题有可行解,另一个问题无可行解 B.两个问题都有可行解
C.两个问题都无可行解 D.一个问题无界,另一个问题可行 2.下列说法错误的是B 。
A.任何线性规划问题都有一个与之对应的对偶问题B.对偶问题无可行解时,其原问题的目标函数无界。C.若原问题为maxZ=CX,AX≤b,X≥0,则对偶问题为minW=Yb,YA≥C,Y≥0。D.若原问题有可行解,但目标函数无界,其对偶问题无可行解。
3.如线性规划的原问题为求极大值型,则下列关于原问题与对偶问题的关系中正确的是BCDE。
A原问题的约束条件“≥”,对应的对偶变量“≥0” B原问题的约束条件为“=”,对应的对偶变量为自由变量 C.原问题的变量“≥0”,对应的对偶约束“≥” D.原问题的变量“≤O”对应的对偶约束“≤”E.原问题的变量无符号限制,对应的对偶约束“=” 4.一对互为对偶的问题存在最优解,则在其最优点处有BD
A.若某个变量取值为0,则对应的对偶约束为严格的不等式B.若某个变量取值为正,则相应的对偶约束必为等式C.若某个约束为等式,则相应的对偶变取值为正D.若某个约束为严格的不等式,则相应的对偶变量取值为0 E.若某个约束为等式,则相应的对偶变量取值为0
5.下列有关对偶单纯形法的说法正确的是ABCD。
A.在迭代过程中应先选出基变量,再选进基变量B.当迭代中得到的解满足原始可行性条件时,即得到最优解 C.初始单纯形表中填列的是一个正则解D.初始解不需要满足可行性 E.初始解必须是可行的。
6.根据对偶理论,在求解线性规划的原问题时,可以得到以下结论ACD。
A. 对偶问题的解B.市场上的稀缺情况 C.影子价格D.资源的购销决策E.资源的市
场价格
7.在下列线性规划问题中,CE采用求其对偶问题的方法,单纯形迭代的步骤一般会减少。
四、名词、简答题
-1
1、对偶可行基:凡满足条件δ=C-CBBA≤0的基B称为对偶可行基。 2、.对称的对偶问题:设原始线性规划问题为maxZ=CX s.t AX≤b X ≥0 称线性规划问题minW=Yb s.t YA≥C
Y≥0 为其对偶问题。又称它们为一对对
称的对偶问题。
3、影子价格:对偶变量Yi表示与原问题的第i个约束条件相对应的资源的影子价格,在数量上表现为,当该约束条件的右端常数增加一个单位时(假设原问题的最优解不变),原问题目标函数最优值增加的数量。 4.影子价格在经济管理中的作用。(1)指出企业内部挖潜的方向;(2)为资源的购销决策提供依据;(3)分析现有产品价格变动时资源紧缺情况的影响;(4)分析资源节约所带来的收益;(5)决定某项新产品是否应投产。
5.线性规划对偶问题可以采用哪些方法求解?(1)用单纯形法解对偶问题;(2)由原问题的最优单纯形表得到;(3)由原问题的最优解利用互补松弛定理求得;(4)由Y*=CBB-1求得,其中B为原问题的最优基
6、一对对偶问题可能出现的情形:1.原问题和对偶问题都有最优解,且二者相等;2.一个问题具有无界解,则另一个问题具有无可行解;3.原问题和对偶问题都无可行解。 五、写出下列线性规划问题的对偶问题
1.minZ=2x1+2x2+4x3
六、已知线性规划问题
应用对偶理论证明该问题最优解的目标函数值不大于25
七、已知线性规划问题 maxZ=2x1+x2+5x3+6x4
﹡
其对偶问题的最优解为Y=4,Y2=1,试应用对偶问题的性质求原问题的最优解。
﹡l
七、用对偶单纯形法求解下列线性规划问题:
八、已知线性规划问题
T
(1) 写出其对偶问题 (2)已知原问题最优解为X﹡=(2,2,4,0),试根据对偶理论,直
接求出对偶问题的最优解。
W* = 16
一、填空题
1、灵敏度分析研究的是线性规划模型的原始、最优解数据变化对产生的影响。 2、在线性规划的灵敏度分析中,我们主要用到的性质是_可行性,正则性。
3.在灵敏度分析中,某个非基变量的目标系数的改变,将引起该非基变量自身的检验数的变化。
4.如果某基变量的目标系数的变化范围超过其灵敏度分析容许的变化范围,则此基变量应出基。
5.约束常数b;的变化,不会引起解的正则性的变化。
6.在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是Z*+yi△b (设原最优目标函数值为Z﹡)
7.若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用对偶单纯形法求解。
8.已知线性规划问题,最优基为B,目标系数为CB,若新增变量xt,目标系数为ct,系数
-
列向量为Pt,则当Ct≤CBB1Pt时,xt不能进入基底。
9.如果线性规划的原问题增加一个约束条件,相当于其对偶问题增加一个变量。
10、若某线性规划问题增加一个新的约束条件,在其最优单纯形表中将表现为增加一行,一列。
11.线性规划灵敏度分析应在最优单纯形表的基础上,分析系数变化对最优解产生的影响 12.在某生产规划问题的线性规划模型中,变量xj的目标系数Cj代表该变量所对应的产品
的利润,则当某一非基变量的目标系数发生增大变化时,其有可能进入基底。 二、单选题
1.若线性规划问题最优基中某个基变量的目标系数发生变化,则C。
A.该基变量的检验数发生变化B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化D.所有变量的检验数都发生变化
2.线性规划灵敏度分析的主要功能是分析线性规划参数变化对D的影响。
A.正则性B.可行性C.可行解D.最优解
3.在线性规划的各项敏感性分析中,一定会引起最优目标函数值发生变化的是B。 A.目标系数cj的变化B.约束常数项bi变化C.增加新的变量 D.增加新约束 4.在线性规划问题的各种灵敏度分析中,B_的变化不能引起最优解的正则性变化。
A.目标系数B.约束常数C.技术系数D.增加新的变量E.增加新的约束条件 5.对于标准型的线性规划问题,下列说法错误的是C
A.在新增变量的灵敏度分析中,若新变量可以进入基底,则目标函数将会得到进一步改善。B.在增加新约束条件的灵敏度分析中,新的最优目标函数值不可能增加。C.当某个约束常数bk增加时,目标函数值一定增加。D.某基变量的目标系数增大,目标函数值将得到改善
6.灵敏度分析研究的是线性规划模型中最优解和 C 之间的变化和影响。
A 基 B 松弛变量 C原始数据 D 条件系数 三、多选题
1.如果线性规划中的cj、bi同时发生变化,可能对原最优解产生的影响是_ ABCD.
A.正则性不满足,可行性满足B.正则性满足,可行性不满足C.正则性与可行性都满足D.正则性与可行性都不满足E.可行性和正则性中只可能有一个受影响
2.在灵敏度分析中,我们可以直接从最优单纯形表中获得的有效信息有ABCE。
-1
A.最优基B的逆B B.最优解与最优目标函数值C.各变量的检验数D.对偶问题的解E.各列向量
3.线性规划问题的各项系数发生变化,下列不能引起最优解的可行性变化的是ABC_。 A.非基变量的目标系数变化 B.基变量的目标系数变化C.增加新的变量D,增加新的约束条件
4.下列说法错误的是ACD
-1
A.若最优解的可行性满足B b≥0,则最优解不发生变化B.目标系数cj发生变化时,解的正则性将受到影响C.某个变量xj的目标系数cj发生变化,只会影响到该变量的检验数的变化D.某个变量xj的目标系数cj发生变化,会影响到所有变量的检验数发生变化。 四、名词、简答题
1.灵敏度分析:研究线性规划模型的原始数据变化对最优解产生的影响 2.线性规划问题灵敏度分析的意义。(1)预先确定保持现有生产规划条件下,单位产品利润的可变范围;(2)当资源限制量发生变化时,确定新的生产方案;(3)确定某种新产品的投产在经济上是否有利;(4)考察建模时忽略的约束对问题的影响程度;(5)当产品的设计工艺改变时,原最优方案是否需要调整。
四、某工厂在计划期内要安排生产I、Ⅱ两种产品。已知生产单位产品所需的设备台时及A、B两种原料的消耗如表所示: I Ⅱ 设备 1 2 8台时 原材料A 4 0 16kg 原材料B 0 4 12kg 该工厂每生产一件产品I可获利2百元,每生产一件产品Ⅱ可获利3百元。
(1)单纯形迭代的初始表及最终表分别如下表I、Ⅱ所示:
x1 x2 x3 x4 x5
xB X3 X4 X5 -Z 0 2 3 O 0 0 8 1 2 1 O 0 16 4 0 0 1 0 12 0 4 0 0 1 14 0 0 -3/2 -1/8 0 Xl 4 1 0 0 1/4 0 X5 4 0 0 -2 1/2 1 X2 2 0 1 1/2 -1/8 0 说明使工厂获利最多的产品混合生产方案。 (2)如该厂从别处抽出4台时的设备用于生产I、Ⅱ,求这时该厂生产产品I、Ⅱ的最优方案。 (3)确定原最优解不变条件下,产品Ⅱ的单位利润可变范围。 (4)该厂预备引进一种新产品Ⅲ,已知生产每件产品Ⅲ,需消耗原材料A、B分别为6kg,3kg使用设备2台时,可获利5百元,问该厂是否应生产该产品及生产多少?
(1)使工厂获利最多的产品混合生产方案:生产I产品4件,生产II产品2件,设备台时与原材料A全部用完,原材料B剩余4kg,此时,获利14百元。 (2)X*=(4,3,2,0,o)Tz*=17 (3)0≤C2≤4 (4)应生产产品Ⅲ,产量为2。
五、给出线性规划问题
用单纯形表求解得单纯形表如下,试分析下列各种条件变化下最优解(基)的变化:
xl x2 x3 x4 x5
xB -Z -8 0 0 -3 -5 -1 xl 1 1 0 -1 4 x2 2 -1 0 1 2 -1 1 (1)分别确定目标函数中变量X1和X2的系数C1,c2在什么范围内变动时最优解不变; (2)目标函数中变量X3的系数变为6; (3)增添新的约束X1+2x2+x3≤4
解:(1)3/4≤C1≤3 2≤C2≤8 (2)X*=(2,0,1,0,0,0)T Z*=10 (3)X*=(2,1,0,0,1,0)T Z*=7 (4)X*=(0,2,0,0,0,1/3)T Z*=25/3
第六章 物资调运规划运输问题
一、填空题
1. 物资调运问题中,有m个供应地,Al,A2?,Am,Aj的供应量为ai(i=1,2?,m),n
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库《运筹学》考试及参考答案(3)在线全文阅读。
相关推荐: