物联网实训系统-M3+ZigBee使用说明书 11
第三节 物联网无线传感(ZigBee)感知系统
ZigBee是一种新兴的短距离、低功耗、低数据速率、低成本、低复杂度的无线网络技术。ZigBee在整个协议栈中处于网络层的位置,其下是由IEEE 802.15.4规范实现PHY(物理层)和MAC(媒体访问控制层),对上ZigBee提供了应用层接口。
ZigBee可以组成星形、网状、树形的网络拓扑,可用于无线传感器网络(WSN)的组网以及其他无线应用。ZigBee工作于2.4 GHz的免执照频段,可以容纳高达65 000个节点。这些节点的功耗很低,单靠2节5号电池就可以维持工作6~24个月。除此之外,它还具有很高的可靠性和安全性。这些优点使基于ZigBee的WSN广泛应用于工业控制、消费性电子设备、汽车自动化、家庭和楼宇自动化、医用设备控制等。
ZigBee的基础是IEEE802.15.4,这是IEEE无线个人区域网工作组的一项标准,被称作IEEE802.15.4(ZigBee)技术标准。ZigBee不仅只是802.15.4的名字。IEEE仅处理低级MAC层和物理层协议,因此ZigBee联盟对其网络层协议和API进行了标准化。ZigBee联盟还开发了安全层。
节点类型
在Zigbee网络中,节点分为三种类型:协调者、路由器和终端节点。其中ZigBee 协调者(coord)为协调者节点,每个ZigBee网络必须有一个。他的主要作用是初始化网络信息。ZigBee 路由器(router)为路由节点,他的作用是提供路由信息。ZigBee 终端节点(rfd为终端节点),它没有路由功能,完成的是整个网络的终端任务。
层的概念
在Zigbee中有几个层的概念是比较重要的。ZigBee的体系结构由称为层的各模块组成。每一层为其上层提供特定的服务:即由数据服务实体提供数据传输服务;管理实体提供所有的其他管理服务。
每个服务实体通过相应的服务接入点(SAP)为其上层提供一个接口,每个服务接入点通过服务原语来完成所对应的功能。 (1)物理层(PHY)
物理层定义了物理无线信道和MAC子层之间的接口,提供物理层数据服务和物理层管理服务。
物理层内容:
1)ZigBee的激活;
2)当前信道的能量检测; 3)接收链路服务质量信息; 4)ZigBee信道接入方式; 5)信道频率选择; 6)数据传输和接收。
(2)介质接入控制子层(MAC)
MAC层负责处理所有的物理无线信道访问,并产生网络信号、同步信号;支持PAN连接和分离,提供两个对等MAC实体之间可靠的链路。
MAC层功能:
1)网络协调器产生信标;
物联网实训系统-M3+ZigBee使用说明书 12
2)与信标同步;
3)支持PAN(个域网)链路的建立和断开; 4)为设备的安全性提供支持;
5)信道接入方式采用免冲突载波检测多址接入(CSMA-CA)机制; 6)处理和维护保护时隙(GTS)机制;
7)在两个对等的MAC实体之间提供一个可靠的通信链路。 (3)网络层
ZigBee协议栈的核心部分在网络层。网络层主要实现节点加入或离开网络、 接收或抛弃其他节点、路由查找及传送数据等功能。
网络层功能: 1)网络发现; 2)网络形成; 3)允许设备连接; 4)路由器初始化; 5)设备同网络连接;
6)直接将设备同网络连接; 7)断开网络连接; 8)重新复位设备; 9)接收机同步; 10)信息库维护。 (4)应用层
ZigBee应用层框架包括应用支持层(APS)、ZigBee设备对象(ZDO)和制造商所定义的应用对象。
应用支持层的功能包括:维持绑定表、在绑定的设备之间传送消息。
ZigBee设备对象的功能包括:定义设备在网络中的角色(如ZigBee协调器和终端设备),发起和响应绑定请求,在网络设备之间建立安全机制。ZigBee设备对象还负责发现网络中的设备,并且决定向他们提供何种应用服务。
ZigBee应用层除了提供一些必要函数以及为网络层提供合适的服务接口外,一个重要的功能是应用者可在这层定义自己的应用对象。
物联网实训系统-M3+ZigBee使用说明书 13
第四节 物联网RFID射频感知系统
物联网RFID是指把射频识别装置、红外感应器、全球定位系统、激光扫描器等种种装置与互联网连接起来,实现智能化识别和管理。物联网RFID通过在物品上嵌入电子标签、条形码等能够存储物体信息的标识,通过无线网络的方式将其即时信息发送到后台信息处理系统,而各大信息系统可互联形成一个庞大的网络。从而可达到对物品进行实施跟踪、监控等智能化管理的目的。通俗来讲,物联网RFID可实现人与物之间的信息沟通。
物联网RFID感知层,主要实现标识、识别功能;其中,采用射频识别(RFID)技术、NFC技术实现物体的标识功能,采用传感器技术实现物体的识别、感知功能。传输层,主要实现信息的传输,采用无线网络技术、互联网技术。其中,感知识别是一个基础,网络传输是一个平台,是一个支撑,智能应用是一个标志和体现。
在物联网中,系统应用流程如下:
(1)对物体属性进行标识,属性包括静态和动态的属性,静态属性可以直接存储在标签中,动态属性需要先由传感器实时探测;
(2)识别设备完成对物体属性的读取,并将信息转换为适合网络传输的数据格式; (3)将物体的信息通过网络传输到信息处理中心(处理中心可能是分布式的,如家里的电脑或者手机,也可能是集中式的,如中国移动的IDC),由处理中心完成物体通信的相关计算。
物联网主要涉及电子标签、传感器、芯片及智能卡等三大领域,而在对传感网技术的开发和市场的拓展中,其中非常关键的技术之一是RFID技术。实质是利用RFID技术结合已有的网络技术、数据库技术、中间件技术等,构筑一个由大量联网的阅读器Reader和无数移动的标签Tag组成比互联网更为庞大的物联网,因此RFID技术成为物联网发展的排头兵。
RFID技术的工作原理是:电子标签进入读写器产生的磁场后,接收解读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息,或者主动发送某一频率的信号;解读器读取信息并解码后,送至中央信息系统进行有关数据处理。
美国政府是RFID应用的积极推动者,在其推动下美国在RFID标准的建立、相关软硬件技术的开发与应用领域均走在世界前列。目前,美国、英国、德国、瑞典、瑞士、日本、南非等国家均有较为成熟且先进的RFID产品,RFID被广泛应用于工业自动化、商业自动化、交通运输控制管理等众多领域,如汽车及火车交通监控、高速公路自动收费系统、停车场管理系统、物品管理、流水线生产自动化、安全出入检查、仓储管理、动物管理、车辆防盗等场合。随着RFID技术的发展演进以及成本的迅速降低,RFID技术应用领域不断拓展,产业规模正处于高速增长期。
目前,我国RFID企业总数虽然超过100家,但是缺乏关键核心技术,特别是在超高频RFID方面。从包括芯片、天线、标签和读写器等硬件产品来看,低高频RFID技术门槛较低,国内发展较早,技术较为成熟,产品应用广泛,目前处于完全竞争状况。
在物联网 rfid的概念中,所有物体可以通过Intenet主动进行交互,除了互联网外,主要涉及RFID技术、传感器技术、智能嵌入技术、微波/纳米技术等。预计物联网 rfid是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。物联网rfid技术是物联
物联网实训系统-M3+ZigBee使用说明书 14
网中关键技术之一。以简单RFID系统为基础,结合已有的网络技术、数据库技术、中间件技术等,构筑一个由大量联网的阅读器和无数移动的标签组成的,比Internet更为庞大的物联网成为RFID技术发展的趋势。
物联网实训系统-M3+ZigBee使用说明书 15
第二章 系统组成
一、硬件平台
1、硬件组成
从硬件角度看,系统由4大部分组成:位于最底层的传感器采集节点、中间的路由节点、将数据传送到PC机的协调器节点以及PC机几个平台。系统框图如图2-1所示:
PCUART/USB协调器(LM3S9B96)ZigBee路由1路由2路由3ZigBeeZigBeeZigBee采集节点1采集节点2采集节点3采集节点4采集节点5采集节点6图2-1 系统框图
从上图可以看到,除协调器与PC机的通讯可采用以太网或USB外,其他各个部分之间都采用ZigBee网络。整个系统除了PC机外的其他部分都采用当前最流行的低功耗、小封装的Cortex-M3芯片做主控芯片。其中的终端节点和路由节点采用LM3S811,汇聚节点采用内部集成以太网和USB控制器的LM3S6952或LM3S9B96,终端节点除ZigBee部分进行数据传输外,还有不同的传感器信号处理部分。具体见下面介绍。
2、主要器件介绍 ? Cortex-M3简介
ARM公司于2005年推出了Cortex-M3内核,就在当年ARM公司与其他投资商合伙成立了Luminary(流明诺瑞)公司,由该公司率先设计、生产与销售基于Cortex-M3内核的ARM芯片——Stellaris(群星)系列ARM。
Cortex-M3内核是ARM公司整个Cortex内核系列中的微控制器系列(M)内核,还是其它两个系列分别是应用处理器系列(A)与实时控制处理系列(R),这三个系列又分别简称为A、R、M系列,当然这三个系列的内核分别有各自不同的应用场合。
Cortex-M3内核主要是应用于低成本、小管脚数和低功耗的场合,并且具有极高的运
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库EL-IOT-II实验箱使用说明书V2(3)在线全文阅读。
相关推荐: