解:本题所求的三角形,即为圆的内接直角三角形,由平面几何知识,应分两步进行:先从2n个点中构成直径(即斜边)共有n种取法;再从余下的(2n-2)个点中取一点作为直角顶点,有(2n-2)种不同取法.故总共有n(2n-2)=2n(n-1)个直角三角形.故填2n(n-1).
例2: 从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点原直线共有____条(结果用数值来表示).
解:因为直线过原点,所以C=0. 从1、2、3、5、7、11这6个数中任取2个作为A、B, 两数的顺序不同,表示的直线也不同,所以直线的条数为 P(6,2)=30. 二 分类求解
例3 四边体的一个顶点为A,从其它顶点与各棱的中点中取3点,使它们和A在同一平面上,不同取法有( )
(A)30种 (B)33种 (C)36种 (D)39种
解:符合条件的取法可分三类:① 4个点(含A)在同一侧面上,有3 =30种;②4个点(含A)在侧棱与对棱中点的截面上,有3种;由加法原理知不同取法有33种,故选B. 三 排除法求解
例4 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )
(A) 8种 (B) 12种 (C) 16种 (D) 20种
解:由六个任取3个面共有 C(6,3)=20种,排除掉3个面都相邻的种数,即8个角上3个平面相邻的特殊情形共8种,故符合条件共有 20-8=12种,故选(B).
例5 正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有( )个?
解:从7个点中任取3个点,共有C(7,3)=35 个,排除掉不能构成三角形的情形.3点在同一直线上有3个,故符合条件的三角形共有 35-3=32个. 四 转化法求解
例6 空间六个点,它们任何三点不共线,任何四点不共面,则过每两点的直线中有多少对异面直线?
解:考虑到每一个三棱锥对应着3 对异面直线,问题就转化为能构成多少个三棱锥. 由于这六个点可构成C(6,4)=15 个三棱锥,故共有3×15 =45对异面直线.
例7 一个圆的圆周上有10个点,每两个点连接一条弦,求这些弦在圆内的交点个数最多有几个?
解:考虑到每个凸四边形的两条对角线对应一个交点,则问题可转化为构成凸四边形的个数.显然可构成 C(10,4)=210个圆内接四边形,故10个点连成的点最多能在圆中交点210个.
6、染色问题:
不涉及环形染色 可以采用特殊区域优先处理的方法来分步解决。 环形染色可采用如下公式解决:
An=(a-1)^n+(a-1)×(-1)^n n表示被划分的个数,a表示颜色种类
原则:被染色部分编号,并按编号顺序进行染色,根据情况分类 在所有被染色的区域,区分特殊和一般,特殊区域优先处理
例题1:将3种作物种植在如图4所示的5块试验田里,每块种植一种作物,且相邻的试验田不能种同一种作物。则有多少种种植方法?
图1
例题2:用5种不同颜色为图中ABCDE五个部分染色,相邻部分不能同色,但同一种颜色可以反复使用,也可以不使用,则符合要求的不同染色方法有多少种?
图2
例题3:将一个四棱锥的五个顶点染色,使同一条棱的2个端点不同色,且只由五个颜色可以使用,有多少种染色方法?
图3
例题4:一个地区分为如图4所示的五个行政区域,现在有4种颜色可供选择,给地图着色,要求相邻区域不同色,那么则有多少种染色方法?
图4
例题5:某城市中心广场建造了一个花圃,分6个部分(如图5) 现在要栽种4种不同的颜色的花,每部分栽种一种且相邻部分不能种同样颜色的花,则有多少种不同栽种方式?
图5:
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库天字1号排列组合的讲义(新篇)(2)在线全文阅读。
相关推荐: