第三章 多维随机变量及其概率分布
注意: 这是第一稿(存在一些错误)
1、解 互换球后,红球的总数是不变的,即有X?Y?6,X的可能取值有:2,3,4,Y的取值为:2,3,4。则(X,Y)的联合分布律为:
P(X?2,Y?2)?P(X?2,Y?3)?P(X?3,Y?2)?P(X?3,Y?4)?P(X?4,Y?3)?P(X?4,Y?4)?0
P(X?2,Y?4)?P(X?4,Y?2)?P(X?3,Y?3)?223313 ????5555256251325625236 ??5525由于X?Y?6,计算X的边际分布律为:
P(X?2)?P(X?2,Y?4)?P(X?3)?P(X?3,Y?3)?P(X?4)?P(X?4,Y?2)?
2解:a?b?0.5?1 ?1? P?X?0??P?X?0,Y?0??P?X?0,Y?1??0.4?a p?X?Y?1??P?X?0,Y?1??P?X?1,Y?0??a?b
因事件?X?0?与事件?X?Y?1?相互独立,则 P?X?0,X?Y?1??P?X?0??P?X?Y?1?,即
a??0.4?a??a?b? ?2?
由?1?,?2?解得??a?0.4?b?0.1。
3、解 利用分布律的性质,由题意,得 a?0.1?0.1?b?0.1?0.1?c?1 P{Y?0|X?2)?P(Y?0,X?2)P(X?2)?P(Y?0,X?1)P(X?1)?a?0.1a?0.1?b?0.5
P{Y?1}?b?c?0.5
计算可得:a?c?0.2b?0.3 于是X的边际分布律为:
P(X?1)?a?0.1?b?0.6
P(X?2)?0.1?0.1?c?0.2?c?0.4 Y的边际分布律为
P(Y??1)?a?0.1?0.3,P(Y?0)?0.2 P(Y?1)?b?c?0.5
4解:(1)由已知p?X?0,Y?0??p?X?1,Y?2??0.1,则 p?X?0,Y?2??p?Y?2??p?X?1,Y?2??0.3?0.1?0.2, p?X?0,Y?1??p?X?0??p?X?0,Y?0??p?X?0,Y?2??0.1, p?X?1,Y?0??p?Y?0??p?X?0,Y?0??0.1,
p?X?1,Y?1??p?X?1??p?X?1,Y?0??p?X?1,Y?2??0.4。
?1?4,??1??,?4?1?2,?k?0,k?1, k?2.(2)p?Y?kX?0??p?X?0,Y?k?p?X?0?5、解 (1)每次抛硬币是正面的概率为0.5,且每次抛硬币是相互独立的。由题意知,X的可能取值有:3,2,1,0,Y的取值为:3,1。则(X,Y)的联合分布律为:
P(X?3,Y?1)?P(X?2,Y?3)?P(X?1,Y?3)?P(X?0,Y?1)?0
113?1?2?1?P(X?3,Y?3)????,P(X?2,Y?1)?C3????
8?2??2?2831?1?11?1?P(X?1,Y?1)?C3????,P(X?0,Y?3)????
2?2?88?2?X的边际分布律为:
23321?1?11P(X?0)????,P(X?1)?C382?2?33?1?????
8?2?21?1??1?13P(X?2)?C????,P(X?3)????
8?2??2?282323Y的边际分布律为:
P(Y?3)?P(X?0,Y?3)?P(X?3,Y?3)?P(Y?1)?P(X?1,Y?1)?P(X?2,Y?1)?3414
(2)在{Y?1}的条件下X的条件分布律为:
P(X?1,Y?1)P(Y?1)12P(X?0|Y?1)?0,P(X?1|Y?1)??
P(X?2|Y?1)?P(X?2,Y?1)P(Y?1)?12,P(X?3|Y?1)?0
6解:(1)p?X?0,Y?1??p?Y?1X?0?p?X?0??p?X?0,Y?2??p?Y?2X?0?p?X?0??p?X?0,Y?3??p?Y?3X?0?p?X?0??p?X?1,Y?1??p?Y?1X?1?p?X?1??7181181181130115115,
, ,
, , 。
4190p?X?1,Y?2??p?Y?2X?1?p?X?1??p?X?1,Y?3??p?Y?3X?1?p?X?1??(2)p?Y?1??p?X?0,Y?1??p?X?1,Y?1??p?Y?2??p?X?0,Y?2??p?X?1,Y?2??p?Y?3??p?X?0,Y?3??p?X?1,Y?3??38901190,
, 。
(3)p?X?0Y?1??p?X?0,Y?1?p?Y?1??3541?641,
p?X?1Y?1??p?X?1,Y?1?p?Y?1?e??。
7、解 (1)已知P(X?m)??mm!,m?0,1,2,3?。由题意知,每次因超速引起的事
故是相互独立的,当m?0,1,2,3?时,
P(Y?n|X?m)?Cm(0.1)(0.9)nnm?n,n?0,1,2,?m。
于是(X,Y)的联合分布律为:
e??P(X?m,Y?n)?P(X?m)?P(Y?n|X?m)??mm!Cm(0.1)(0.9)nnm?n,
(n?0,1,2,?m;m?0,1,2,3?) (2)Y的边际分布律为:
????P(Y?n)??P(Xm?0?m,Y?n)??m?0e???mm!C(0.1)(0.9)nmnm?n?e?0.1?(0.1?)n!n,
(n?0,1,2,?)
即Y~?(0.1?)。
(该题与41页例3.1.4相似)
8解:(1)Y可取值为0,a,2a, p?X?0,Y?0??0.6,
p?X?0,Y?a??p?X?0,Y?2a??0, p?X?1,Y?0??0.3?1?p?,
p?X?1,Y?a??0.3p, p?X?1,Y?2a??0,
p?X?2,Y?0??0.1?1?p?,
2p?X?2,Y?a??0.2p?1?p?,
p?X?2,Y?2a??0.1p。
2(2)p?Y?0X?1???1?p?,
p?Y?aX?1??p, p?Y?2aX?1??0。
9、解 (1)由边际分布函数的定义,知 ?0,x?0?FX(x)?limF(x,y)??0.3,0?x?1
y????1,x?1??0,y?0?FY(y)?limF(x,y)??0.4,0?y?1
x????1,y?1?(2)从X和Y的分布函数,可以判断出X和Y都服从两点分布,则
X的边际分布律为:
X 0 1 P 0.3 0.7 Y的边际分布律为
Y 0 1 P 0.4 0.6
(3) 易判断出P(X?0,Y?0)?0.1,所以(X,Y)的联合分布律为:
P(X?0,Y?0)?0.1
P(X?0,Y?1)?P(X?0)?P(X?0,Y?0)?0.2 P(X?1,Y?0)?P(Y?0)?P(X?0,Y?0)?0.3 P(X?1,Y?1)?P(Y?1)?P(X?0,Y?1)?0.4。
10解:(1)p?X?0,Y?1??p?Y?1X?0?p?X?0??pBApA?0.35, p?X?0,Y?0??p?X?0??p?X?0,Y?1??0.35,
p?X?1,Y?0??p?Y?0??p?X?0,Y?0??1?p?Y?1??p?X?0,Y?0??0.25, p?X?1,Y?1??p?X?1??p?X?1,Y?0??0.05。
????(2)当x?0或y?0时,F?x,y??0,
当0?x?1,0?y?1时,F(x,y)?p?X?0,Y?0??0.35,
当0?x?1,y?1时,F(x,y)?p?X?0,Y?0??p?X?0,Y?1??0.7,
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库浙大版概率论与数理统计答案 - 第三章在线全文阅读。
相关推荐: