中考试题北京市第四中学总复习:《圆》全章复习与巩固—知识讲解

来源:网络收集 时间:2025-04-26 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

& 鑫达捷致力于精品文档精心制作仅供参考&

《圆》全章复习与巩固—知识讲解(基础)

撰稿:张晓新审稿:杜少波

【学习目标】

1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;

2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;

3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;

4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;

5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.

【知识网络】

【要点梳理】

要点一、圆的定义、性质及与圆有关的角

1.圆的定义

(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.

(2)圆是到定点的距离等于定长的点的集合.

要点诠释:

①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;

②圆是一条封闭曲线.

2.圆的性质

(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.

在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.

鑫达捷

& 鑫达捷致力于精品文档 精心制作仅供参考 &

鑫达捷 (2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.

(3)垂径定理及推论:

①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

③弦的垂直平分线过圆心,且平分弦对的两条弧.

④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.

⑤平行弦夹的弧相等.

要点诠释:

在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)

3.两圆的性质

(1)两个圆是一个轴对称图形,对称轴是两圆连心线.

(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.

4.与圆有关的角

(1)圆心角:顶点在圆心的角叫圆心角.

圆心角的性质:圆心角的度数等于它所对的弧的度数.

(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.

圆周角的性质:

①圆周角等于它所对的弧所对的圆心角的一半.

②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.

③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.

④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

⑤圆内接四边形的对角互补;外角等于它的内对角.

要点诠释:

(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.

(2)圆周角定理成立的前提条件是在同圆或等圆中.

要点二、与圆有关的位置关系

1.判定一个点P 是否在⊙O 上

设⊙O 的半径为,OP=,则有

点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内.

要点诠释:

点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.

2.判定几个点12n

A A A L 、、在同一个圆上的方法

当时,在⊙O 上.

3.直线和圆的位置关系

设⊙O 半径为R ,点O 到直线的距离为.

(1)直线和⊙O 没有公共点直线和圆相离.

(2)直线和⊙O 有唯一公共点直线和⊙O 相切. (3)直线和⊙O 有两个公共点直线和⊙O 相交.

4.切线的判定、性质

(1)切线的判定:

①经过半径的外端并且垂直于这条半径的直线是圆的切线.

②到圆心的距离等于圆的半径的直线是圆的切线.

(2)切线的性质:

①圆的切线垂直于过切点的半径.

②经过圆心作圆的切线的垂线经过切点.

& 鑫达捷致力于精品文档 精心制作仅供参考 &

鑫达捷

③经过切点作切线的垂线经过圆心.

(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.

(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

5.圆和圆的位置关系 设的半径为

,圆心距

.

(1)和

没有公共点,且每一个圆上的所有点在另一个圆的外部

外离

.

(2)和没有公共点,且

的每一个点都在

内部

内含

(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部

外切

. (4)和有唯一公共点,除这个点外,

的每个点都在

内部

内切

. (5)和

有两个公共点

相交

.

要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形

1.三角形的内心、外心、重心、垂心

(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I ”表示.

(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.

(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G 表示.

(4)垂心:是三角形三边高线的交点. 要点诠释:

(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;

(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即

(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径).

名称 确定方法 图形

性质

外心(三角形外接圆的圆心)

三角形三边中垂线的交点

(1)OA=OB=OC ;(2)外心不一定在三角形内部

内心(三角形内切圆的圆心)

三角形三条角平分线的交点

(1)到三角形三边距离相等;(2)OA 、OB 、OC 分别平分∠BAC 、∠ABC 、∠ACB ; (3)内心在三角形内部.

2

& 鑫达捷致力于精品文档 精心制作仅供参考 &

鑫达捷 (1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.

(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.

要点四、圆中有关计算

1.圆中有关计算

圆的面积公式:,周长.

圆心角为

、半径为R 的弧长. 圆心角为,半径为R ,弧长为的扇形的面积

. 弓形的面积要转化为扇形和三角形的面积和、差来计算.

圆柱的侧面图是一个矩形,底面半径为R ,母线长为的圆柱的体积为,侧面积为,全面积为. 圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.

要点诠释:

(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的

, 即; (2)在扇形面积公式中,涉及三个量:扇形面积S 、扇形半径R 、扇形的圆心角,知道其中的两个量就可以求出第三个量.

(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点

类似,可类比记忆;

(4)扇形两个面积公式之间的联系:

.

【典型例题】 类型一、圆的基础知识

【高清ID 号: 362179 高清课程名称:《圆》单元复习

关联的位置名称(播放点名称):经典例题1-2】

1.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为

【答案】13;

& 鑫达捷致力于精品文档 精心制作仅供参考 &

鑫达捷 【解析】由已知得BC ∥x 轴,则BC 中垂线为2412

x -+== 那么,△ABC 外接圆圆心在直线x=1上,

设外接圆圆心P(1,a),则由PA=PB=r 得到:PA 2=PB 2

即(1+1)2+(a-3)2

=(1+2)

2+(a+2)2

化简得 4+a 2-6a+9=9+a 2+4a+4

解得 a=0

即△ABC 外接圆圆心为P(1,0)

则 22(11)(03)13r PA ==++-=

【总结升华】 三角形的外心是三边中垂线的交点,由B 、C 的坐标知:圆心P (设△ABC 的外心为P )必在

直线x=1上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到P (1,0);连接PA 、

PB ,由勾股定理即可求得⊙P 的半径长.

类型二、弧、弦、圆心角、圆周角的关系及垂径定理

2.如图所示,⊙O 的直径AB 和弦CD 相交于点E ,已知AE =1cm ,EB =5cm ,∠DEB =60°,

求CD 的长.

【答案与解析】

作OF ⊥CD 于F ,连接OD .∵ AE =1,EB =5,∴ AB =6. ∵ 32

AB OA ==,∴ OE =OA-AE =3-1=2. 在Rt △OEF 中,∵ ∠DEB =60°,∴ ∠EOF =30°, ∴ 112EF OE =

=,∴ 223OF OE EF -= 在Rt △DFO 中,OF 3,OD =OA =3,

∴ 2222

3(3)6DF OD OF =-=-=(cm).

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文中考试题北京市第四中学总复习:《圆》全章复习与巩固—知识讲解在线全文阅读。

中考试题北京市第四中学总复习:《圆》全章复习与巩固—知识讲解.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/fanwen/1288894.html(转载请注明文章来源)

相关推荐:

Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219