生物正交化学在活体标记及药物传递中的研究进展

来源:网络收集 时间:2025-09-01 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

摘要生物正交化学反应是一类可以在生理条件下发生的化学反应,具有简单、高效、高特异性的特点,在生物医学的研究中被广泛应用.基于生物体天然生命过程的代谢工程,可对生物分子进行无损、高效的生物代谢修饰,是一种理想的生物修饰技术.通过生物代谢途径可有效地将各种化学报告基团引入靶标物的生物分子中,有利于携带配对基团的标记物与其发生生物正交反应,从而在活体系统中实现生物分子的标记示踪和药物递送.这种基于代谢工程与生物正交化学的标记策略因为具有两者之间的优势,在生物医学工程中的标记、成像示踪、诊断等领域展现出巨大的研究价值与应用潜力.本文介绍了生物正交和代谢工程的原理与生物医学研究进展,阐述了生物正交化学在分子成像和药物传递等方面的研究与应用.

 

  关键词生物正交化学,代谢工程,生物标记,活体示踪,药物传递

 

  生物正交化学(bioorthogonal chemistry)反应是指在不干扰机体正常生物过程的情况下,可以在生物体内进行的化学反应.这种化学反应即使在复杂的生理条件下也具有优良的选择性,反应过程简单快速并且不会受体内其他成分的影响,不会产生毒副产物,在生物医学的研究中有着广泛的应用前景[1-2].该反应通过生物、化学反应将目的报告基团修饰到靶标物上,随后与携带配对基团的标记物发生化学连接反应,从而实现标记物对靶标物的稳定偶联[3-4].目前广泛使用的生物正交反应包括:金属催化或光催化的生物正交反应以及无需催化的生物正交反应.铜催化的叠氮和末端炔基之间的环加成反应(copper catalyzed azide-alkyne cycloaddition,CuAAC)是生命科学研究中常用的生物正交反应,但是铜离子对生物体具有毒性,不适宜广泛应用.在此基础上,Bertozzi等[5]于2004年开发了一种新型的无铜生物正交化学反应(strain-promoted azide-alkyne cycloaddition,SPAAC),该反应避免了铜作为催化剂所产生的细胞毒性,成功地将生物正交反应应用于活细胞(图1).常用的生物正交化学基团主要包括叠氮(N3)基团、二苯并环辛基(dibenzocyclooctyne,DBCO)、双环[6.1.0]壬炔(bicyclo[6.1.0]nonyne,BCN)和双苯并八元环炔(dibenzocyclooctyne,DIBO)等.其中,N3基团与炔基(DBCO,BCN)之间具有高度的反应活性.N3基团尺寸小,引入到活体系统中仅产生微小的结构扰动,不影响生物分子的功能,并且天然的生物体内不存在N3分子,因而不会与体内的生物分子反应,是一种理想的生物正交功能基团[6-7].

  为了在体内实现高效、特异的生物正交标记,首先需要将理想的正交反应基团(如叠氮基团)选择性地引入到细胞或生物体的目标生物分子上,随后利用配对基团修饰的标记物对目标生物分子进行选择性连接.因此,如何安全、无损地将生物正交基团引入生物靶标物中仍然是一个亟待解决的问题.近年来,代谢工程(metabolic engineering)作为一种无损、高效的活体修饰技术,可利用生物体固有的代谢合成途径将功能基团引入到活体系统中[8-11].这是由于生物体在代谢过程中需要利用氨基酸、糖类或脂类等生物成分,通过将功能基团修饰到糖类或脂类等生物分子中,便可通过固有的生物合成途径在体外或体内直接将功能基团修饰到活细胞或活体生物中.基于代谢工程与生物正交化学的标记技术,通过在活细胞或整个生物体中引入特定的生物正交化学基团,随后与配对基团修饰的探针或纳米药物通过生物正交化学反应连接,可以实现对目标分子或生物体的特定标记、细胞或病原微生物的成像示踪、药物的靶向递送等(图2)[6].该技术通过细胞内源性代谢过程而快速形成稳定的共价连接,而且不受外源化学反应干扰,因此具有无损、高效、稳定、特异的优点,并成为研究者关注的焦点.本文主要从以下几个方面阐述生物正交化学在活体系统中应用的最新研究进展.

  1生物正交化学在活体标记与示踪中的应用

 

  为了了解细胞或病原微生物等活体系统的生物学机制,对目标生物分子在体内进行特定的标记和追踪是重要的研究手段.目前常用较为成熟的生物标记技术,包括荧光蛋白基因编码和荧光染料抗体偶联.绿色荧光蛋白(green fluorescent protein,GFP)基因编码标记常用于蛋白质的功能研究,分析活细胞和整个机体中的蛋白质表达和定位,但是此类较大的基因编码标记物会对蛋白质的结构产生扰动,从而影响相关蛋白质的表达或功能,而且这种基因标记方法不适用于细胞中的聚糖、脂类、核酸等生物分子[1,7,12].另外,虽然荧光染料抗体偶联物也已广泛应用于跟踪活细胞和整个机体的生物分子,适用于多种生物分子的成像,但是这些偶联试剂的大尺寸和物理性质阻碍了它们在活体系统中结合抗原,从而限制了其在生物体内的应用[1,6].因此,寻找一个能在活体内广泛适用且对生物体几乎没有影响的标记技术,对于活体生物的功能研究具有极其重要意义.近年来,科学家们发展了基于代谢工程的生物正交化学修饰策略,该策略利用生物自身的生物合成和代谢机制,将独特的功能基团(生物正交化学功能基团)整合到目标生物分子中,从而实现在复杂的生物体内对目标分子的标记和研究.

 

  1.1细胞的生物正交代谢标记

 

  在活细胞中,蛋白质、糖类和脂质都可以被生物正交基团修饰[7,13].通过化学合成的方法将生物正交基团连接到代谢类似物上,利用生物的代谢合成过程将生物正交基团引入细胞,随后用配对基团修饰的反应探针连接,可以实现对目标生物分子的标记或成像,进而分析细胞或目标生物分子的定位和重要功能.

 

  科学家研究证实了代谢标记的生物正交基团能有效标记细胞,Bertozzi的团队[14]利用糖代谢工程与生物正交反应,分析了活斑马鱼的胚胎发育过程中多种糖类结构.该团队在斑马鱼胚胎发育过程中,在不同的细胞发展阶段加入环辛炔功能化的唾液酸,使其作为一种糖类衍生物可以被细胞利用并将功能基团引入细胞表面的糖蛋白上,随后与配对基团修饰的荧光探针通过生物正交反应连接,可视化地研究斑马鱼胚胎发展过程中糖类表达的动力学和定位.Rong等[15]使用N修饰的糖类似物在体内代谢标记大鼠的心脏聚糖,N3可与DBCO修饰的荧光探针反应,在活体心脏中可视化监控心肌细胞表面糖蛋白.此外,将心脏分离裂解后,与炔烃修饰的生物素反应,用链霉亲和素珠富集后,进行了蛋白质组学的鉴定.这一研究在大鼠中实现了心脏聚糖的体内代谢标记和成像,有利于探索心脏糖基在病理生理过程中的生物合成和功能应用.Lee等[16]开发了一种简单可控的干细胞成像方法,首先利用叠氮化的代谢前体Ac4ManNAz,通过糖代谢在干细胞表面引入N3基团作为外源性化学受体,随后制备携带BCN基团的纳米颗粒BCN-CNPs,将Cy5.5荧光染料、氧化铁纳米粒子和金纳米粒子分别偶联或包封在BCN-CNPs上,用于光学、磁共振和计算机断层扫描成像.这些可成像的纳米粒子通过生物正交反应结合在干细胞表面上的化学受体,实现对干细胞的体内追踪.

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典工学类生物正交化学在活体标记及药物传递中的研究进展在线全文阅读。

生物正交化学在活体标记及药物传递中的研究进展.doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/shiyong/1224370.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219