生物正交化学在活体标记及药物传递中的研究进展(2)

来源:网络收集 时间:2025-09-04 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

 

  1.2病原微生物的生物正交标记与示踪

 

  细菌和病毒等病原微生物严重威胁着人类的生命健康,探索病原微生物在活体内的侵袭行为和相关机制显得尤为重要.利用代谢工程和生物正交反应,可以实现对病原微生物的活体示踪,有利于研究其致病机制.细菌多糖具有独特的结构,多与发病机制有关,是广泛研究的靶点.通过代谢工程和生物正交化学对细菌多糖进行标记,能够可视化地研究细菌的体内侵袭行为[17].Swarts等[18]设计了一系列含有N3基团的海藻糖类似物,分枝杆菌通过代谢合成途径利用人工合成的海藻糖合成自身的细胞壁糖脂,从而在细菌表面引入N3基团.随后与炔基功能化的荧光探针通过生物正交反应连接,用于后续糖脂分布、转运和动力学成像以及代谢产物的分析和发现.Geva-Zatorsky等[19]利用糖代谢工程和生物正交化学对肠道的各种共生厌氧菌进行标记,可视化地研究了厌氧微生物在小鼠体内的分布和定位,以及微生物与宿主的相互作用.

 

  病毒感染导致的疾病是对人类健康的一大威胁,了解病毒入侵的机制有助于我们更好地预防和治疗病毒感染导致的疾病[20-21].通常使用基因工程技术使病毒表达荧光受体或者使用荧光试剂化学偶联病毒,以实现对病毒的成像和跟踪[20,22].然而,这些标记技术容易影响病毒的侵袭能力,无法准确再现病毒在机体内的感染过程,不利于病毒入侵机制的研究.由于病毒的蛋白质和核酸等分子均可被标记,将代谢工程与生物正交化学结合,可实现对病毒的无损代谢修饰,最终实现对病毒的实时跟踪或标记[23-24].

 

  病毒外部结构的组成部分,如病毒衣壳、囊膜等,是由糖类、蛋白质和脂质构成的,这些成分主要来源于宿主细胞.通过细胞的代谢过程,可在病毒进行复制与组装时将携带功能基团的代谢衍生物嵌入到病毒的衣壳、囊膜等结构中.Pan等[25]提出的利用生物正交和脂类代谢标记技术追踪病毒的策略,减少了化学标记对病毒的干扰,有效研究了病毒的体内感染过程.通过将叠氮化物修饰的脂类代谢标记到H5N1p病毒包膜上,利用DBCO修饰的近红外荧光探针通过生物正交反应偶联小鼠肺部的病毒,实现了体内的病毒成像和追踪.

 

  2生物正交化学在靶向传递中的应用

 

  通过代谢工程,生物正交化学基团可以被修饰到细胞或病原微生物的表面,以此构建人工靶点.将其应用于药物的靶向传递时,能显著提高药物的生物利用率,从而降低药物的毒副作用.在纳米材料的发展过程中,生物配体例如抗体、多肽、适配体等通常被连接到纳米材料表面用于增加与特定细胞系的结合,从而实现药物的靶向递送[26-28].然而,这种传统的靶向修饰策略会增加纳米颗粒制备的复杂性,给生物应用带来潜在的风险[29-30].近年来,基于代谢工程的生物正交化学标记作为一种有效的靶向修饰策略,被广泛应用于药物的靶向设计.

 

  2.1抗肿瘤药物的靶向递送

 

  传统的靶向配体修饰策略已经被证明具有较好的肿瘤靶向效果,例如抗体偶联药物.然而,基于抗体的药物传递系统存在一定的局限性,包括肿瘤的异质性以及由于长期化疗或长期药物暴露导致的癌细胞中抗原的下调,严重影响了抗肿瘤药物的靶向应用[8,13].代谢工程可以在包括肿瘤细胞在内的各种细胞表面,人工引入生物正交功能基团(如N3基团)作为化学受体,并且不受限于细胞的表型,这些人工化学受体可大量表达,用于生物正交标记、靶向识别和药物递送[8,31-32].

 

  目前,生物正交化学反应已被应用于成像剂和抗肿瘤药物的组织靶向递送,具有很好的体内示踪和肿瘤靶向效果[33-34].在癌症治疗中,体内可视化的成像剂递送以及针对肿瘤组织的特异性药物的递送是非常有必要的.可视化有利于体内的肿瘤诊断,而高效特异的药物传递可以提高药物的治疗效果,减少不良反应.基于糖代谢的生物正交化学使得生物体内靶向的药物传递以及肿瘤的诊断治疗获得进一步的改善.Lee等[31]通过两步体内肿瘤靶向策略实现了对肿瘤的高效特异性靶向.第一步通过小鼠尾静脉注射包载了叠氮化糖Ac4ManNAz的纳米颗粒,通过高渗透长滞留效应(enhanced permeability and retention effect,EPR)使其在肿瘤部位累积,并且通过细胞固有的生物代谢作用在肿瘤细胞引入N3基团.第二步尾静脉注射包载了Ce6的BCN修饰的纳米颗粒,通过体内生物正交反应使含药纳米颗粒靶向富集在肿瘤部位,显著提高了对肿瘤的治疗效果.Du等[35]首先给小鼠尾静脉注射装载了叠氮化糖衍生物的纳米胶束(Ac4ManNAz-LP),使其依靠EPR效应累积在肿瘤部位并对肿瘤代谢修饰N3基团,随后将制备的DBCO修饰的光敏剂纳米颗粒(DBCO-ZnPc-LP)注射到小鼠体内,结果证明DBCO-ZnPc-LP通过生物正交反应能很好的累积在肿瘤部位,产生高效的光热/光声协同抗肿瘤效果.此外,我们课题组构建了一种双靶向的仿生纳米颗粒[36],将N基团引入到T细胞表面作为人工靶点,提取细胞膜包裹于纳米颗粒表面,利用T细胞膜的免疫识别功能以及N3基团与BCN基团之间的生物正交反应,实现了对肿瘤的高效靶向和光热治疗(图3).

 

  2.2免疫治疗中的靶向应用

 

  免疫治疗是肿瘤治疗的有效方法之一,生物正交化学反应可用于免疫刺激物的传递,增强免疫治疗抗肿瘤的效果.Zhang等[37]通过在磁性纳米簇的表面包裹被N3工程化的白细胞膜,然后通过生物正交反应在细胞膜表面修饰T细胞刺激物,设计了一种人工抗原呈递细胞(aAPCs).制备的aAPCs可以刺激抗原特异性细胞毒性T细胞(CTL)的扩增,并且通过磁共振成像和磁控技术,可以直观有效地引导CTL进入肿瘤组织,增强T细胞的抗肿瘤治疗效果.Mongis等[38]将不同的免疫刺激物与DBCO基团进行偶联,用叠氮化的糖预处理肿瘤细胞使其表达N3基团,随后通过生物正交化学反应将免疫刺激物连接到肿瘤细胞表面,成功引入的免疫刺激物可以激活小鼠的抗肿瘤免疫作用,显著抑制肿瘤的生长.

  此外,生物正交化学在免疫治疗中也发挥着很大的作用,具有很好的应用前景.我们课题组基于生物正交糖代谢构建了一类新型的非天然单糖类似物(Ac4ManN-BCN),并将其应用于T细胞的免疫治疗研究.该单糖类似物高效地将化学报告基团BCN标记于肿瘤细胞表面,形成一种肿瘤表面的人工靶点,构建一种人工T细胞-肿瘤靶向策略.叠氮修饰后的T细胞(N3-T细胞)利用生物正交反应快速地靶向BCN标记的肿瘤细胞(BCN-tumor细胞),并促进T细胞的快速激活及其对肿瘤的识别杀伤作用[39].同时,我们利用前期细胞糖代谢工程将化学报告基团(-N3)嵌入T细胞膜中,构建人源T细胞人工受体,病毒经纳米材料(PEI-DBCO)包裹后,病毒粒子表面的DBCO基团与T细胞人工受体(-N3)发生高效、特异的生物正交反应,促进病毒与T细胞的相互作用与基因转导,从而构建出安全、高效的CAR-T细胞,实现对肿瘤的免疫治疗[40](图4).

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典工学类生物正交化学在活体标记及药物传递中的研究进展(2)在线全文阅读。

生物正交化学在活体标记及药物传递中的研究进展(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/shiyong/1224370.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219