数值分析 第二章
2.当x?1,?1,2时,f(x)?0,?3,4,求f(x)的二次插值多项式。 解:
x0?1,x1??1,x2?2,f(x0)?0,f(x1)??3,f(x2)?4;l0(x)?l1(x)?l2(x)?(x?x1)(x?x2)1??(x?1)(x?2)
(x0?x1)(x0?x2)2(x?x0)(x?x2)1?(x?1)(x?2)(x1?x0)(x1?x2)6(x?x0)(x?x1)1?(x?1)(x?1)(x2?x0)(x2?x1)3则二次拉格朗日插值多项式为
L2(x)??yklk(x)
k?02??3l0(x)?4l2(x) ??(x?1)(x?2)?124(x?1)(x?1) 3?5237x?x?6236.设xj,j?0,1,n,n为互异节点,求证:
k(1)
?xl(x)?xkjjj?0n (k?0,1,,n);
(2)证明
?(xj?0j?x)klj(x)?0 (k?0,1,,n);
(1) 令f(x)?x 若插值节点为xj,j?0,1,k,n,则函数f(x)的n次插值多项式为Ln(x)??xkjlj(x)。
j?0nf(n?1)(?)插值余项为Rn(x)?f(x)?Ln(x)??n?1(x)
(n?1)!又
k?n,
?f(n?1)(?)?0
?Rn(x)?0k??xkjlj(x)?x (k?0,1,j?0nn,n);
(2)?(xj?x)klj(x)j?0??(?Ckjxij(?x)k?i)lj(x)
j?0ni?0iknn??C(?x)(?xijlj(x))k?ii?0j?0n又0?i?n 由上题结论可知
?xl(x)?x
kjjij?0n?原式??Cki(?x)k?ixii?0n?(x?x)k?0
?得证。
7设f(x)?C?a,b?且f(a)?f(b)?0,求证:
21maxf(x)?(b?a)2maxf??(x). a?x?ba?x?b8解:令x0?a,x1?b,以此为插值节点,则线性插值多项式为
L1(x)?f(x0) =?f(a)x?x1x?x0 ?f(x1)x0?x1x?x0x?bx?a?f(b) a?bx?a
又f(a)?f(b)?0?L1(x)?0插值余项为R(x)?f(x)?L1(x)?1f??(x)(x?x0)(x?x1) 2?f(x)?1f??(x)(x?x0)(x?x1) 2又(x?x0)(x?x1)2?1????(x?x0)?(x1?x)???2?
12?(x1?x0)41?(b?a)241?maxf(x)?(b?a)2maxf??(x). a?x?ba?x?b8x8.在?4?x?4上给出f(x)?ex的等距节点函数表,若用二次插值求e的近似值,要使
截断误差不超过10,问使用函数表的步长h应取多少?
解:若插值节点为xi?1,xi和xi?1,则分段二次插值多项式的插值余项为
?61f???(?)(x?xi?1)(x?xi)(x?xi?1) 3!1?R2(x)?(x?xi?1)(x?xi)(x?xi?1)maxf???(x)
?4?x?46R2(x)?设步长为h,即xi?1?xi?h,xi?1?xi?h
123343?R2(x)?e4?h?eh.
62733若截断误差不超过10,则
?6R2(x)?10?6343eh?10?6 27?h?0.0065.?9.若yn?2n,求?4yn及?4yn.,
解:根据向前差分算子和中心差分算子的定义进行求解。
yn?2n
?4yn?(E?1)4yn
4??(?1)j??4???E4?jynj?0?j4??(?1)j??4?j??y4?n?jj?0? 4??(?1)j??4?j??24?j?y nj?0??(2?1)4yn?yn?2n1?4y2E?1n?(E?2)4yn
?(E?12)4(E?1)4yn ?E?2?4yn
?yn?2?2n?2
16.f(x)?x7?x4?3x?1,求F??20,21,,27??及F??20,21,,28??。
解:
f(x)?x7?x4?3x?1
若xi?2i,i?0,1,,8
n)则f?x0,x1,,xf((?)n??n!
?f?x0,x1,,x??f(7)(?)7!?7!77!?1
f?x0,x1,,xf(8)(?)8??8!?0
19.求一个次数不高于
4
次的多项式
P(x),P(0)?P?(0)?0,P(1)?P?(1)?0,P(2)?0
解法一:利用埃米尔特插值可得到次数不高于4的多项式
x0?0,x1?1y0?0,y1?1 m0?0,m1?1使它满足
H3(x)??yj?j(x)??mj?j(x)j?0j?011?0(x)?(1?2x?x0x?x12)()x0?x1x0?x1
?(1?2x)(x?1)2?1(x)?(1?2?(3?2x)x2x?x1x?x02)()x1?x0x1?x0
?0(x)?x(x?1)2?1(x)?(x?1)x2
?H3(x)?(3?2x)x2?(x?1)x2??x3?2x2
设P(x)?H3(x)?A(x?x0)2(x?x1)2 其中,A为待定常数
P(2)?1?P(x)??x3?2x2?Ax2(x?1)2?A?1 412x(x?3)2 4
从而P(x)?解法二:采用牛顿插值,作均差表:
xi 0 1 2 f(xi) 0 1 1 一阶均差 二阶均差 1 0 -1/2 p(x)?p(x0)?(x?x0)f[x0,x1]?(x?x0)(x?x1)f[x0,x1,x2]
?(A?Bx)(x?x0)(x?x1)(x?x2)
?0?x?x(x?1)(?1/2)?(A?Bx)x(x?1)(x?2)
31A??,B?,44 又由 p?(0)?0,p?(1)?1, 得
x2p(x)?(x?3)2.4所以
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库数值分析课后题答案在线全文阅读。
相关推荐: