∵AB=2, ∴AM=BM=1, ∵AE=
,AB=2,
∴BE=1, ∴ME=∵∠EAF=45°,
∴∠MAE+∠NAF=45°, ∵∠MAE+∠AEM=45°, ∴∠MEA=∠NAF, ∴△AME∽△FNA, ∴∴
, ,
=
,
解得:x=, ∴AF=故答案为:
=.
.
【点评】本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,
20.(5分)观察下列各式:
=1+
,
=1+,
=1+,
……
请利用你所发现的规律, 计算
+
+
+…+
,其结果为 9
.
【分析】直接根据已知数据变化规律进而将原式变形求出答案. 【解答】解:由题意可得:
+
=1+
+1+
+1+
++…+1+
+…+
=9+(1﹣+﹣+﹣+…+﹣=9+=9
)
.
.
故答案为:9
【点评】此题主要考查了数字变化规律,正确将原式变形是解题关键.
三、解答题(本大题共6小题,满分74分) 21.(10分)先化简,再求值:(xy2+x2y)×()﹣1,y=2sin45°﹣
.
÷
,其中x=π0﹣
【分析】原式利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.
【解答】解:原式=xy(x+y)?当x=1﹣2=﹣1,y=
﹣2
=﹣
?时,原式=
=x﹣y, ﹣1.
【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.
22.(12分)如图,AB为⊙O的直径,点C在⊙O上,AD⊥CD于点D,且AC平分∠DAB,求证:
(1)直线DC是⊙O的切线; (2)AC2=2AD?AO.
【分析】(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证; (2)连接BC,证△DAC∽△CAB即可得. 【解答】解:(1)如图,连接OC,
∵OA=OC, ∴∠OAC=∠OCA, ∵AC平分∠DAB, ∴∠OAC=∠DAC, ∴∠DAC=∠OCA, ∴OC∥AD, 又∵AD⊥CD, ∴OC⊥DC,
∴DC是⊙O的切线;
(2)连接BC, ∵AB为⊙O的直径, ∴AB=2AO,∠ACB=90°,
∵AD⊥DC,
∴∠ADC=∠ACB=90°, 又∵∠DAC=∠CAB, ∴△DAC∽△CAB, ∴
=
,即AC2=AB?AD,
∵AB=2AO, ∴AC2=2AD?AO.
【点评】本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质.
23.(12分)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题: (1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少? (2)在飞行过程中,小球从飞出到落地所用时间是多少? (3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?
【分析】(1)根据题目中的函数解析式,令y=15即可解答本题; (2)令y=0,代入题目中的函数解析式即可解答本题; (3)将题目中的函数解析式化为顶点式即可解答本题. 【解答】解:(1)当y=15时, 15=﹣5x2+20x, 解得,x1=1,x2=3,
答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s; (2)当y=0时, 0═﹣5x2+20x, 解得,x3=0,x2=4, ∵4﹣0=4,
∴在飞行过程中,小球从飞出到落地所用时间是4s; (3)y=﹣5x2+20x=﹣5(x﹣2)2+20, ∴当x=2时,y取得最大值,此时,y=20,
答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.
【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.
24.(13分)如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,(1)求图象过点B的反比例函数的解析式; (2)求图象过点A,B的一次函数的解析式;
(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.
).
【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;
(2)由菱形的边长确定出A坐标,利用待定系数法求出直线AB解析式即可; (3)联立一次函数与反比例函数解析式求出交点坐标,由图象确定出满足题意x的范围即可.
【解答】解:(1)由C的坐标为(1,∵菱形OABC,
∴BC=OC=OA=2,BC∥x轴, ∴B(3,
),
),得到OC=2,
设反比例函数解析式为y=, 把B坐标代入得:k=3
,
则反比例解析式为y=;
(2)设直线AB解析式为y=mx+n, 把A(2,0),B(3,解得:
,
x﹣2,
,即一次函数与反比例函数交点坐标为(3,
)或(﹣
;
)代入得:
,
则直线AB解析式为y=(3)联立得:解得:1,﹣3
或),
则当一次函数的图象在反比例函数的图象下方时,自变量x的取值范围为x<﹣1或0<x<3.
【点评】此题考查了待定系数法求反比例函数解析式与一次函数解析式,一次函数、反比例函数的性质,以及一次函数与反比例函数的交点,熟练掌握待定系数法是解本题的关键.
25.(13分)已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点. (1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF; (2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.
【分析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、∠EBD=∠FAD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;
(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD、
BD=AD,根据同角的余角相等可得出∠BDE=∠ADF,由此即可证出△EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF. 【解答】(1)证明:连接AD,如图①所示. ∵∠A=90°,AB=AC,
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典中考初中2024年山东省滨州市中考数学试卷(解析版)(3)在线全文阅读。
相关推荐: