SPSS实践题
习题1
分析此班级不同性别的学生的物理和数学成绩的均值、最高分和最低分。
Case Processing Summary Cases N 数学 * 性别 物理 * 性别 Included Percent 26 26 100.0% 100.0% N Excluded Percent 0 0 .0% .0% N Total Percent 26 26 100.0% 100.0% Report 性别 男生 Mean N Std. Deviation Minimum Maximum 女生 Mean N Std. Deviation Minimum Maximum Total Mean N Std. Deviation Minimum Maximum 数学 80.0769 13 5.75125 72.00 95.00 80.7692 13 8.91772 70.00 99.00 80.4231 26 7.36029 70.00 99.00 物理 74.5385 13 5.17390 69.00 87.00 76.1538 13 8.32512 65.00 91.00 75.3462 26 6.84072 65.00 91.00
结论:男生数学成绩 最高分: 95 最低分: 72 平均分: 80.08 物理成绩 最高分: 87 最低分: 69 平均分: 74.54 女生数学成绩 最高分: 99 最低分: 70 平均分: 80.77 物理成绩 最高分: 91 最低分: 65 平均分: 76.15 习题2
分析此班级的数学成绩是否和全国平均成绩85存在显著差异。
One-Sample Statistics
数学
N
26
Mean 80.4231
Std. Deviation
7.36029
Std. Error Mean
1.44347
One-Sample Test Test Value = 85
t 数学 -3.171 df 25 Sig. (2-tailed) .004 Mean Difference -4.57692 95% Confidence Interval of the Difference Lower -7.5498 Upper -1.6040 结论:由分析可知相伴概率为0.004,小于显著性水平0.05,因此拒绝零假设,即此班级数学成绩和全国平均水平85分有显著性差异
习题3
分析兰州市2月份的平均气温在90年代前后有无明显变化。
Group Statistics
二月份气温
分组 0 1
N
11 18
Mean -4.527273 -3.200000
Std. Deviation
1.2034043 1.3006786
Std. Error Mean
.3628400 .3065729
Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval Sig. F 二月份气Equal 温 variances assumed 1.019 Sig. .322 t -2.740 df 27 (2-tailed) Mean Difference Std. Error Difference of the Difference Lower Upper -.3335208 .011 -1.3272727 .4843246 -2.3210246 Independent Samples Test Levene's Test for Equality of Variances t-test for Equality of Means 95% Confidence Interval Sig. F 二月份气Equal 温 variances assumed Equal variances not assumed -2.794 22.599 .010 -1.3272727 .4750156 -2.3108823 -.3436632 1.019 Sig. .322 t -2.740 df 27 (2-tailed) Mean Difference Std. Error Difference of the Difference Lower Upper -.3335208 .011 -1.3272727 .4843246 -2.3210246
结论:由分析可知, 方差相同检验相伴概率为0.322,大于显著性水平0.05,因此接受零假设,90年代前后2月份温度方差相同。双侧检验相伴概率为0.011, 小于显著性水平0.05,拒绝零假设,即2月份平均气温在90年代前后有显著性差异
习题4
分析15个居民进行体育锻炼3个月后的体质变化。
Paired Samples Statistics
Pair 1
锻炼前 锻炼后
Mean 65.20 53.27
N
15 15
Std. Deviation
7.523 5.873
Std. Error Mean
1.943 1.516
Paired Samples Correlations
Pair 1
锻炼前 & 锻炼后
N
15
Correlation
-.300
Sig. .277
Paired Samples Test Paired Differences 95% Confidence Std. Mean Deviation Std. Error Mean Interval of the Difference Lower Upper t df Sig. (2-tailed) Paired Samples Test Paired Differences 95% Confidence Std. Mean Deviation Pair 锻炼前 - 1 锻炼后 11.933 10.846 Std. Error Mean 2.800 Interval of the Difference Lower 5.927 Upper t df 14 Sig. (2-tailed) .001 17.940 4.261
结论:由分析可知,锻炼前后差值与零比较,相伴概率小于显著性水平,拒绝零假设,即锻炼前后有显著性差异
习题5
为了农民增收,某地区推广豌豆番茄青菜的套种生产方式。为了寻找该种方式下最优豌豆品种,进行如下试验:选取5种不同的豌豆品种,每一品种在4块条件完全相同的田地上试种,其它施肥等田间管理措施完全一样。根据表中数据分析不同豌豆品种对平均亩产的影响是否显著。
ANOVA 产量 Between Groups (Combined) Linear Term Contrast Deviation Within Groups Total Sum of Squares 13195.700 3591.025 9604.675 11491.500 24687.200 df 4 1 3 15 19 Mean Square 3298.925 3591.025 3201.558 766.100 F 4.306 4.687 4.179 Sig. .016 .047 .025 Multiple Comparisons Dependent Variable:产量 LSD Mean Difference (I) 品种 1 (J) 品种 2 3 4 (I-J) -13.25000 -5.75000 -21.50000 Std. Error 19.57166 19.57166 19.57166 Sig. .509 .773 .289 95% Confidence Interval Lower Bound -54.9660 -47.4660 -63.2160 Upper Bound 28.4660 35.9660 20.2160 5 2 1 3 4 5 3 1 2 4 5 4 1 2 3 5 5 1 2 3 4 51.50000 13.25000 7.50000 -8.25000 64.75000 5.75000 -7.50000 -15.75000 57.25000 21.50000 8.25000 15.75000 73.00000 -51.50000 -64.75000 -57.25000 -73.00000 ********19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 19.57166 .019 .509 .707 .679 .005 .773 .707 .434 .010 .289 .679 .434 .002 .019 .005 .010 .002 9.7840 -28.4660 -34.2160 -49.9660 23.0340 -35.9660 -49.2160 -57.4660 15.5340 -20.2160 -33.4660 -25.9660 31.2840 -93.2160 -106.4660 -98.9660 -114.7160 93.2160 54.9660 49.2160 33.4660 106.4660 47.4660 34.2160 25.9660 98.9660 63.2160 49.9660 57.4660 114.7160 -9.7840 -23.0340 -15.5340 -31.2840 *. The mean difference is significant at the 0.05 level. 产量 Student-Newman-Keuls aSubset for alpha = 0.05 品种 5 1 3 2 4 Sig. N 4 4 4 4 4 1 212.5000 2 264.0000 269.7500 277.2500 285.5000 .696 1.000 Means for groups in homogeneous subsets are displayed. a. Uses Harmonic Mean Sample Size = 4.000.
结论:由以上分析可知,F统计量F(4,15)=4.306,对应的相伴概率为0.016,小于显著性水平,拒绝零假设,即不同品种豌豆与亩产量之间存在显著性差异。1、2、3、4号品种与5号有明显差异, 5号品种产量最低, 因此购种选择前四种均可。
习题6
由于时间安排紧张,公司决定安排4名员工操作设备A、B、C各一天,得到日产量数据如表所示。试分析4名员工和3台设备是否有显著性差异,以便制定进一步的采购计划。
Tests of Between-Subjects Effects Dependent Variable:日生产量 Type III Sum of Source Corrected Model Intercept equipment staff Error Total Corrected Total Squares 433.167 31212.000 318.500 114.667 32.833 31678.000 466.000 adf 5 1 2 3 6 12 11 Mean Square 86.633 31212.000 159.250 38.222 5.472 F 15.831 5703.716 29.102 6.985 Sig. .002 .000 .001 .022
设备 * 员工 Dependent Variable:日生产量 95% Confidence Interval 设备 1 员工 1 2 3 4 2 1 2 3 4 3 1 2 3 4 Mean 53.250 45.917 46.583 51.250 62.000 54.667 55.333 60.000 49.750 42.417 43.083 47.750 Std. Error 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 1.654 Lower Bound 49.203 41.869 42.536 47.203 57.953 50.619 51.286 55.953 45.703 38.369 39.036 43.703 Upper Bound 57.297 49.964 50.631 55.297 66.047 58.714 59.381 64.047 53.797 46.464 47.131 51.797 Multiple Comparisons Dependent Variable:日生产量 LSD (I) 员工 1 (J) 员工 2 3 4 2 1 3 4 3 1 2 4 4 1 2 3 Based on observed means. Mean Difference (I-J) 7.33 6.67 2.00 -7.33 -.67 -5.33 -6.67 .67 -4.67 -2.00 5.33 4.67 ******95% Confidence Interval Std. Error 1.910 1.910 1.910 1.910 1.910 1.910 1.910 1.910 1.910 1.910 1.910 1.910 Sig. .009 .013 .335 .009 .739 .031 .013 .739 .050 .335 .031 .050 Lower Bound 2.66 1.99 -2.67 -12.01 -5.34 -10.01 -11.34 -4.01 -9.34 -6.67 .66 -.01 Upper Bound 12.01 11.34 6.67 -2.66 4.01 -.66 -1.99 5.34 .01 2.67 10.01 9.34 The error term is Mean Square(Error) = 5.472.
日生产量
Student-Newman-Keuls
a,b
Subset
员工 2 3 4 1 Sig.
N
3 3 3 3
1 47.67 48.33 53.00
2
53.00 55.00
.070
.335
Multiple Comparisons Dependent Variable:日生产量 LSD Mean Difference (I) 设备 1 (J) 设备 2 3 2 1 3 3 1 2 (I-J) -8.75 3.50 8.75 12.25 -3.50 -12.25 ****95% Confidence Interval Std. Error 1.654 1.654 1.654 1.654 1.654 1.654 Sig. .002 .079 .002 .000 .079 .000 Lower Bound -12.80 -.55 4.70 8.20 -7.55 -16.30 Upper Bound -4.70 7.55 12.80 16.30 .55 -8.20 日生产量 Student-Newman-Keuls a,bSubset 设备 3 1 2 Sig. N 4 4 4 1 45.75 49.25 2 58.00 1.000 .079
结论:由以上假设检验分析可知,不同人员、不同设备各自以及他们的交互作用对日生产量都有显著影响。由上图可知,要提高员工日生产量,应该选购设备2。
习题7
数据记录了18个试验地里杨树一年生长量与施用氮肥和钾肥的关系,考虑杨树初始高度的影响,分析氮肥和钾肥的施肥量和杨树生长量之间的关系。
Between-Subjects Factors
钾肥量
.00 12.50 25.00
氮肥量
多 少
N
6 6 6 9 9
Descriptive Statistics
Dependent Variable:树苗生长量 钾肥量
氮肥量
Mean
Std. Deviation
N
.00 多 少 Total 2.0667 1.8167 1.9417 2.0600 1.9833 2.0217 2.2500 2.2500 2.2500 2.1256 2.0167 2.0711 .08021 .20207 .19405 .11533 .06658 .09411 .05000 .15000 .10000 .11949 .22973 .18626 3 3 6 3 3 6 3 3 6 9 9 18 12.50 多 少 Total 25.00 多 少 Total Total 多 少 Total Levene's Test of Equality of Error Variances Dependent Variable:树苗生长量 F 2.292 df1 5 df2 12 Sig. .111 aTests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept + 初始高度 + 钾肥 + 氮肥 + 钾肥 * 氮肥 Tests of Between-Subjects Effects Dependent Variable:树苗生长量 Type III Sum of Source Corrected Model Intercept 初始高度 钾肥 氮肥 钾肥 * 氮肥 Error Total Corrected Total Squares .538 .627 .129 .313 .041 .021 .051 77.801 .590 adf 6 1 1 2 1 2 11 18 17 Mean Square .090 .627 .129 .157 .041 .011 .005 F 19.247 134.473 27.602 33.579 8.877 2.262 Sig. .000 .000 .000 .000 .013 .150 a. R Squared = .913 (Adjusted R Squared = .866)
1. Grand Mean Dependent Variable:树苗生长量 95% Confidence Interval Mean 2.071 aStd. Error .016 Lower Bound 2.036 Upper Bound 2.107 a. Covariates appearing in the model are evaluated at the following values: 树苗初始高度 = 5.6111. 2. 钾肥量 Dependent Variable:树苗生长量 95% Confidence Interval 钾肥量 .00 12.50 25.00 Mean 1.945 2.015 2.253 aaaStd. Error .028 .028 .028 Lower Bound 1.883 1.954 2.192 Upper Bound 2.006 2.077 2.315 a. Covariates appearing in the model are evaluated at the following values: 树苗初始高度 = 5.6111. 3. 氮肥量 Dependent Variable:树苗生长量 95% Confidence Interval 氮肥量 多 少 Mean 2.119 2.023 aaStd. Error .023 .023 Lower Bound 2.069 1.973 Upper Bound 2.169 2.073 a. Covariates appearing in the model are evaluated at the following values: 树苗初始高度 = 5.6111. 4. 钾肥量 * 氮肥量 Dependent Variable:树苗生长量 95% Confidence Interval 钾肥量 .00 氮肥量 多 少 Mean 1.984 1.906 aaStd. Error .042 .043 Lower Bound 1.891 1.811 Upper Bound 2.077 2.000 12.50 多 少 2.111 1.920 2.263 2.244 aaaa.041 .041 .039 .039 2.021 1.829 2.176 2.157 2.200 2.011 2.350 2.330 25.00 多 少 a. Covariates appearing in the model are evaluated at the following values: 树苗初始高度 = 5.6111.
结论:由分析可知,剔除树苗初始高度的影响,树苗生长量与钾肥、氮肥施肥量有显著性差异。 习题8
试分析表中的全国各地区城镇居民消费性支出和总收入的相关性。
Descriptive Statistics
总收入 消费性支出
Mean 12273.2971 8401.4674
Std. Deviation 3763.84849 2388.45482
N
31 31
Correlations
总收入
Pearson Correlation Sig. (2-tailed)
总收入
1
消费性支出
.987 .000
**
N
消费性支出
Pearson Correlation Sig. (2-tailed) N
31 .987 .000 31
**
31 1
31
**. Correlation is significant at the 0.01 level (2-tailed).
结论:由分析可知,总收入和支出的pearson相关系数为0.987,为高度相关。假设检验得出的相伴概率小于显著水平0.01,因此拒绝零假设,即可以用样本相关系数r代替总体相关系数ρ。
习题9
试分析表中各地区科研投入的人年数和课题总量之间的相关关系。
Correlations
投入高级职称
Control Variables -none-
a
投入人年数 课题总数
投入人年数
Correlation
Significance (2-tailed) df
课题总数
Correlation
Significance (2-tailed)
1.000
. 0 .959 .000
.959 .000 29 1.000
.
的人年数
.988 .000 29 .944 .000
df 投入高级职称的人年数 Correlation Significance (2-tailed) df 投入高级职称的人年数 投入人年数 Correlation Significance (2-tailed) df 课题总数 Correlation Significance (2-tailed) df a. Cells contain zero-order (Pearson) correlations. 29 .988 .000 29 1.000 . 0 .507 .004 28 0 .944 .000 29 .507 .004 28 1.000 . 0 29 1.000 . 0
结论:由分析可知,投入高级职称的人年数对投入人年数和课题总数都有影响,剔除它的影响,采用偏相关分析。投入人年数和课题总数相关系数为0.507,为中度相关,可以用样本相关系数代替总体相关系数。
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库spss实践题分析及答案在线全文阅读。
相关推荐: