热处理试题及答案(中南大学)

来源:网络收集 时间:2025-04-26 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

一、 填空题

1、试写出下列材料的类别。(按用途分)与应用(举一例)。

20CrMnTi 属 合金结构钢(类别); 可制作变速箱齿轮;T10属碳工具钢;可制作锉刀;45属 碳素结构钢;可制作齿轮、螺栓;W18Cr4V属 合金工具 钢;可制作车刀; 2、化学热处理的基本过程是加热、保温、冷却 。

3、钢的淬透性主要取决于过冷奥氏体的稳定性 ,马氏体的硬度主要取决于含碳量与组织形态 ,钢的表层淬火,只能改变表层的组织结构 ,而化学热处理既能改变表层的组织结构 ,又能改变表层的成分 。 4、低碳钢为了便于切削,常预先进行正火(提高硬度)处理;高碳钢为了便于切削,常预先进行退火(降低硬度)处理;

5、索氏体中的渗碳体是层片状 形貌。回火索氏体中的渗碳体是珠粒状形貌。

6、纯Al的主要强化方法是晶粒细化(加工硬化),Al-Cu合金的主要强化方法是时效强化(固溶强化)。 7、再结晶形核的主要机理有应变诱发的晶界迁移机制,亚晶长大的形核机制。

8、欲消除过共析钢中大量的网状渗碳体应采用球化退火(正火),消除铸件中枝晶偏析应采用均匀化退火。 1.共析钢淬火后,低温、中温、高温回火组织分别为回火马氏体,回火屈氏体,回火索氏体。 2. 马氏体形态主要有板条状和片状两种,其中片状马氏体硬度高、塑性差。 4.为了保持冷变形金属的强度和硬度,应采用回复退火工艺。 5. 铝合金的时效方法可分为自然和人工两种。

1.共析钢过冷奥氏体等温转变曲线三个转变区的转变产物 是 P珠光体 ;B贝氏体 ; M屈氏体 。 2、为了降低冷变形金属的强度和硬度,应采用回复与再结晶退火工艺。

3、根据渗碳剂在渗碳过程中聚集状态的不同,渗碳方法可以分为固体渗碳、液体渗碳、气体渗碳 3. 45钢正火后渗碳体呈层状,调质处理后渗碳体呈球粒状。

4.中温回火主要用于 各种弹簧和锻模等 典型零件处理,回火后得到 回火屈氏体 组织。

5 .铝合金按其成分及生产工艺特点,可分为铸态和变形 ;变形铝合金按热处理性质可分为热处理非强化型 铝合金和可热处理强化型 铝合金两类; 铝合金的时效方法可分为人工时效和自然时效两种。 1.热处理基本工艺参数:加热温度T;加热速度V加热;保温时间t;冷却速度V冷却. 4.为了保持冷变形金属的强度和硬度,应采用回复再结晶退火

7. 再结晶的驱动力是变形时与界面能有关的储能。再结晶形核的主要机制有应变诱发的晶界迁移迁移机制及亚晶长大的形核机制。

10.回归时间过长,则会出现对应于该温度下的脱溶相 ,使硬度重新升高,或发生过时效 ,达不到回归处理的效果。

1.均匀化处理的目的是在高温下通过 扩散 消除或减小实际结晶条件下晶内成分 不均匀 和偏离于 平衡 的组织状态,改善合金材料的工艺性能和使用性能。

2. 基于回复及再结晶过程退火主要应用是消除金属及合金因 冷变形 而造成的组织与性能亚稳定状态。变形前的原始晶粒小,变形储能 高 ,再结晶温度 低

3.时效与回火的区别是固溶体从高温到低温时是否发生了基体 晶体结构的转变。 4.时效后脱溶相与基体界面关系有完全空格 、 半空格 、 非空格 三种形式。 5.时效强化是 位错 与 脱溶质点 的相互作用。主要有位错绕过 机制与位错切割机制。

6.低碳马氏体的形貌一般为板条状,中碳马氏体的形貌一般为板片状,高碳马氏体的形貌一般为片状 。 8.把钢加热到临界点Ac1;或Ac3以上保温并随之以大于临界冷却速度冷却,用以得到介稳状态的马氏体或下贝氏体组织的热处理工艺方法称为 钢的淬火 。

1

9.形变热处理是将塑性变形的 形变强化 与热处理时的 相变强化 结合,使成型工艺与获得最终性能统一起来的一种综合工艺。

4.时效(回火)实质上是亚稳过低和固溶体 的分解。

6.在固态相变中,.新相形核的阻力是新相与母相之间的界面能新相与母相比容积差导致的 应变能。 7.时效后脱溶相与基体界面关系有 完全共格 、半共格 、非共格 三种形式。 8.时效强化是位错 与脱溶质点 的相互作用。主要有绕过 机制与 切割机制。

9.铝合金按其成分及生产工艺特点,可分为变形组织和铸造组织 ,铝合金的时效方法可分为自然和人工两种。

1、工件淬火时常出现的缺陷有表面缺陷、性能缺陷、组织缺陷、形状缺陷。

2退火的目的主要是降低硬度,便于切削加工:消除或改善钢在铸造、轧制、锻造和焊接过程中所造成的各种组织缺陷;细化晶粒,改善组织,为最终热处理做准备;还有为了消除应力,防止变形和开裂。 3正火的目的和退火基本相同,但正火后得到细片状珠光体组织,对低碳钢来说讲,正火组织易进行机械加工;能降低工件切削加工的表面粗糙度;正火还可以消除过共析钢中的渗碳体网。

4淬火的目的是把奥氏体化的钢件淬成马氏体,然后和不同回火温度相配合,获得所需的力学性能。 5 热应力是由于工件加热或冷却时,各部温度不同,使之热胀冷缩 不同而产生的应力叫热应力。 6减少变形与防止开裂的方法很多,但主要的是靠正确的选材、合理的结构设计、冷热加工工艺的密切配合以及正确的热处理制度来保证。

1、常见的金属晶格类型有体心立方晶格、面心立方晶格、密排立方晶格。

2、金属的机械性能主要包括强度、硬度、塑性、韧性、疲劳强度等指标,其中衡量金属材料在静载荷下机械性能的指标有强度、硬度、塑性。衡量金属材料在交变载荷和冲击载荷作用下的指标有疲劳强度和冲击韧性。

3、常用的回火方法有低温回火、中温回火 高温回火。 4、工程中常用的特殊性能钢有不锈钢、耐热钢、耐磨刚。

6、按冶炼浇注时脱氧剂与脱氧程度分,碳钢分为沸腾钢、镇静钢、连铸坯、半镇静钢。

7、钢在一定条件下淬火后,获得一定深度的淬透层的能力,称为钢的淬透性。淬透层通常以工件表面到半马氏体层 的深度来表示。

8、 冷塑性变形的内应力,按作用范围,可分为宏观(第一类)内应力、晶间(第二类)内应力、晶格畸变(第三类)内应力。

9、铸铁中碳以石墨形式析出 的过程称为石墨化,影响石墨化的主要因素有冷却速度和化学成分 。 2、普通灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁中石墨的形态分别为片状、棉絮状、球状、蠕虫状。 3、实际金属晶体的缺陷有空位、间隙原子、位错。 5、金属的断裂形式有脆性断裂和延性断裂 两种。

7、金属元素在钢中形成的碳化物可分为合金渗碳体、特殊碳化物 两类。

9、合金常见的相图有 匀晶相图、共晶相图、包晶相图和具有稳定化合物的二元相图。 10、感应表面淬火的技术条件主要包括表面硬度、有效淬硬深度、淬硬区的分布。 1、液压传动的工作原理是以液体 作为工作介质,依靠液体 来传递运动,依靠液体 来传递动力。 2、液压系统可分为动力系统、执行系统、控制系统、辅件系统四个部分。 3、油液的两个最基本特征是粘性、润滑性,油液流动时的两个基本参数是动力粘度、运动粘度。 4、液压泵是将机械能转换为液体压力的能量转换装置。 5、液压泵是靠密封容积变化变化来实现吸油和压油的,所以称为客积泵。 6、柱塞泵是靠柱塞在柱塞孔内作往复运动,使密封容积变化而吸油和压油的,柱塞泵可分为轴向和径向两类。 7、换向阀的作用是利用阀芯对阀体的相对改变来控制液体的流动方向,接通或关闭油,从而改变液压系统的工作状态,按阀芯运动方向不同,换向阀可分为滑阀和旋阀两大类,其中滑阀作用最大。 2

8、液压基本回路是用液压元件组成并能执行动作的、典型回路,常用的基本回路有方向控制回路、压力控制回路、流量控制回路三种。 9、压力控制回路可用来实现卸载、减压、顺序、保压等功能,满足执行元件在力或转矩上的要求。 10、增压回路中提高油液压力的主要元件增压器。 1、金属的性能一般分为两类,一类是使用性能 ,一类是工艺性能 。

2、大小不变或变化很慢的载荷称为静载荷 ,在短时间内以较高速度作用于零件上的载荷称为冲击载荷 ,大小和方向随时发生周期性变化的载荷称为交变载荷 。 3、强度是指在静载荷作用下,抵抗塑性变形或断裂的能力。

4、原子呈无序堆积状况的物体叫非晶体 ,一般固态金属都是晶体 。

5、金属在 固 态下,随温度的改变,由一种晶格类型转变为另一种晶格类型的现象称为同素异构转变。 6、金属的结晶实际是晶核的形成和长大 的过程。

7、一种金属元素与另一种或几种金属元素或非金属元素 通过熔炼 或其他方法结合而成的具有金属特性 的物质。

8、铁碳合金的基本组织有五种它们的名字是铁素体、奥氏体、渗碳体、珠光体、莱氏体。 9、T12钢按用途分属于工具钢 ,按质量分属于优质钢 。

10、工厂里常用的淬火方法单液淬火法、双介质淬火法、马氏体分级淬火、贝氏体的等温淬火 。 11、调质零件应采用中碳钢和中碳合金钢 。 12、常用的不锈钢有铬不锈钢和铬镍不锈钢 。

13、根据铸铁中石墨形态的不同,铸铁可分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁。 14、黄铜分为普通黄铜和特殊黄铜,硬质合金可分为钨钴类硬质合金、钨钴钛类硬质合金。 15、铝合金的淬火称为固溶处理 ,铝合金淬火后需时效处理 才能达到最终的力学性能。 16、根据工作条件不同,磨具钢又可分为_冷作模具钢_、__热作模具钢__和塑料磨具用钢等 17、合金按照用途可分为_合金渗碳体_、_特殊碳化物_和特殊性能钢三类。

硬质合金是指将一种或多种难熔金属_碳化物__和金属粘结剂,通过_粉末冶金__工艺生产的一类合金材料。 11、铸铁的力学挺能主要取决于_基体的组织_的组织和石墨的基体、形态、_数量_以及分布状态。 12、根据铸铁在结晶过程中的石墨化程度不同,铸铁可分为_灰口铸铁__、_白口铸铁_和麻口铸铁三类。 13、常用铜合金中,_青铜_是以锌为主加合金元素,_白铜_是以镍为主加合金元素。

14、铁碳合金的基本组织中属于固溶体的有_铁素体_和_奥氏体_,属于金属化合物的有_渗碳体_,属于混合物的有_珠光体_和莱氏体。

15、脱溶序列的阶次规则:原子聚集区——过渡相——平衡相 。

16、写出Al—Zn—Mg系合金人工时效时正常的脱溶序列:G,P??''??'?? 。 17、写出Al—Cu系合金人工时效时正常的脱溶序列:G,P??''??'?? 二、名词解释

再结晶:冷变形后的金属加热到一定温度或保温足够时间后,在原来的变形组织中产生非畸变的新晶粒,性能也发生显著变化,并恢复到冷变形前的水平,

临界变形度:通常把对应于得到特别粗大的晶粒的变形称为

热处理:是将钢在固态下加热到预定的温度,并在该温度下保持一段时间,然后以一定速度冷却到室温的一种热加工工艺

马氏体转变:钢从奥氏体状态快速冷却抑制其扩散性分解在较低温度下发生的无扩散型相变 临界冷却速度:表示过冷奥氏体在连续冷却过程中全部转变为珠光体的最大冷却速度

回火:是将淬火钢加热到低于临界点A1的某一温度保温一段时间,使淬火组织转变为稳定的回火组织,然后以适当方式冷却到室温的一种热处理工艺

回火脆性:有些钢在一定的范围内回火时,其冲击韧度显著下降,这种催化现象叫钢的

退火:是将钢加热到临界点Ac1以上或一下温度,保温后随炉缓慢冷却以获得近于平衡状态的热处理工艺 正火:是将钢加热到Ac3或Acm以上适当温度,保温以后在空气中冷却得到珠光体类组织

3

淬火:将钢加热到临界点Ac3或Ac1以上一定温度,保温后以大于临界冷却速度冷却得到马氏体或下贝氏体

等温淬火:是将奥氏体化后的工件淬入Ms点以上某温度盐浴中,等温保持足够长时间,使之转变为下贝氏体组织,然后取出在空气中冷却的淬火方法

调质处理:将淬火和随后回火相结合的热处理工艺成为调质处理 淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力 淬硬性:表示钢淬火时的硬化能力

形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法。 晶粒度:多晶体内的晶粒大小。钢的晶粒度按其奥氏体化条件与长大倾向又分成起始晶粒度、实际晶粒度和本质晶粒度。

晶界无沉淀带:局部脱溶过程中,由于晶界上析出沉淀而使晶界附近出现无脱溶相析出的区域。 原位再结晶:回复过程中,多边化或胞状亚结构会通过晶界迁移和亚晶的合并,周围不断粗化的过程,但变形晶粒特征无改变。

钢的二次硬化:较高温度回火过程中,从马氏体中析出第二相(碳化物)而使刚产生附加强化。 过烧:在热处理过程中由于温度过高,而导致晶界局部熔化而氧化的现象。

不连续脱溶:即胞状脱溶,在脱溶胞与基体之间存在一个明晰的界面,两者成分发生突变,脱溶胞晶格常数不连续变化。

回火马氏体:淬火后回火所致的马氏体或残余奥氏体分解产物,一般由铁素体和碳化物组成。 Orowan机制:位错绕过较硬质点的时候,在质点周围留下位错环,从而使合金强化。 HNi65-5:Cu65%,Ni5%黄铜。

40Mn:含碳量0.4%,Mn含量低于1.5%的优质合金结构钢。

阶次规则:脱溶时在形成平衡相之前会逐步析出的一种或多种过渡相。

普遍脱溶:属于连续脱溶的一种。将固溶处理后的合金置于较低温度保温时,整个过饱和固溶体中普遍地发生脱溶并析出均匀分布的脱溶相的现象。

2A12-T6:可热处理强化的Al-Cu基合金,峰值时效态。

回复:冷变形金属在一定温度保温时,发生的点缺陷运动和位错运动与重新组合,但不包含低位错的新晶粒的生成。

亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。 亚晶界:两相邻亚晶粒间的边界称为亚晶界。

刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。滑移部分与未滑移部分的交界线即为位错线。如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。

单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。 多晶体:由多种晶粒组成的晶体结构称为“多晶体”。 过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。 非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。 变质剂:在浇注前所加入的难熔杂质称为变质剂。

加工硬化:随着塑性变形的增加,金属的强度、硬度迅速增加;塑性、韧性迅速下降的现象。

回复:为了消除金属的加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化。在加热温度较低时,原子的活动能力不大,这时金属的晶粒大小和形状没有明显的变化,只是在晶内发生点缺陷的消失以及位错的迁移等变化,因此,这时金属的强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能显著降低。此阶段为回复阶段。

4

再结晶:被加热到较高的温度时,原子也具有较大的活动能力,使晶粒的外形开始变化。从破碎拉长的晶粒变成新的等轴晶粒。和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。 热加工:将金属加热到再结晶温度以上一定温度进行压力加工。 冷加工:在再结晶温度以下进行的压力加工。 铁素体(F):铁素体是碳在??Fe中形成的间隙固溶体,为体心立方晶格。由于碳在??Fe中的溶解

度`很小,它的性能与纯铁相近。塑性、韧性好,强度、硬度低。它在钢中一般呈块状或片状。 奥氏体(A):奥氏体是碳在在

??Fe中形成的间隙固溶体,面心立方晶格。因其晶格间隙尺寸较大,故碳

??Fe中的溶解度较大。有很好的塑性。

渗碳体(Fe3C):铁和碳相互作用形成的具有复杂晶格的间隙化合物。渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片状存在或网络状存在于晶界。在莱氏体中为连续的基体,有时呈鱼骨状。 珠光体(P):由铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。珠光体有较高的强度和硬度,但塑性较差。

莱氏体(Ld):由奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗碳体很脆,所以莱氏体是塑性很差的组织。

G、P区:合金中能用X射线法测定出的原子聚集区,时与脱溶的产物,尺寸小,晶体结构与基体相同。 C曲线(过冷奥氏体等温转变曲线):以温度为纵坐标,时间为横坐标,分别将各温度下过冷奥氏体的转变开始和转变终了时间连续起来,可以得到两根曲线,其形状像“C”字,故称“C”曲线。亦称为TTT图。 三、问答题

过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?

答:①冷却速度越大,则过冷度也越大。②随着冷却速度的增大,则晶体内形核率和长大速度都加快,加

速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。③过冷度增大,ΔF大,结晶驱动力大,形核率和长大速度都大,且N的增加比G增加得快,提高了N与G的比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。 下列零件或工具用何种碳钢制造:手锯锯条、普通螺钉、车床主轴。

答:手锯锯条:它要求有较高的硬度和耐磨性,因此用碳素工具钢制造,如T9、T9A、T10、T10A、T11、

T11A。

普通螺钉:它要保证有一定的机械性能,用普通碳素结构钢制造,如Q195、Q215、Q235。 车床主轴:它要求有较高的综合机械性能,用优质碳素结构钢,如30、35、40、45、50。 何谓钢的热处理?钢的热处理操作有哪些基本类型?试说明热处理同其它工艺过程的关系及其在机械制造中的地位和作用。

答:(1)为了改变钢材内部的组织结构,以满足对零件的加工性能和使用性能的要求所施加的一种综合的

热加工工艺过程。

(2)热处理包括普通热处理和表面热处理;普通热处理里面包括 退火、正火、

淬火和回火,表面热处理包括表面淬火和化学热处理,表面淬火包括火焰加热表面淬火和感应加热表面淬火,化学热处理包括渗碳、渗氮和碳氮共渗等。

(3)热处理是机器零件加工工艺过程中的重要工序。一个毛坯件经过预备热处理,然后进行切削加工,再

经过最终热处理,经过精加工,最后装配成为零件。热处理在机械制造中具有重要的地位和作用,适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料潜力、降低结构重量、节省材料和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命,做到一个顶几个、顶十几个。此外,通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能。

1)奥氏体的起始晶粒度、实际晶粒度、本质晶粒度;

5

答:(1)起始晶粒度:是指在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚接触时的晶粒大小。 (2)实际晶粒度:是指在某一具体的热处理加热条件下所得到的晶粒尺寸。

(3)本质晶粒度:根据标准试验方法,在930±10℃保温足够时间(3-8小时)后测定的钢中晶粒的大小。

2)珠光体、索氏体、屈氏体、贝氏体、马氏体; 答:珠光体:铁素体和渗碳体的机械混合物。

索氏体:在650~600℃温度范围内形成层片较细的珠光体。 屈氏体:在600~550℃温度范围内形成片层极细的珠光体。 贝氏体:过饱和的铁素体和渗碳体组成的混合物。 马氏体:碳在α-Fe中的过饱和固溶体。 3)奥氏体、过冷奥氏体、残余奥氏体; 答:奥氏体: 碳在

??Fe中形成的间隙固溶体.

过冷奥氏体: 处于临界点以下的不稳定的将要发生分解的奥氏体称为过冷奥氏体。 残余奥氏体:M转变结束后剩余的奥氏体。

4)退火、正火、淬火、回火、冷处理、时效处理(尺寸稳定处理);

答:退火:将工件加热到临界点以上或在临界点以下某一温度保温一定时间后,以十分缓慢的冷却速度(炉

冷、坑冷、灰冷)进行冷却的一种操作。

正火:将工件加热到Ac3或Accm以上30~80℃,保温后从炉中取出在空气中冷却。

淬火:将钢件加热到Ac3或Ac1以上30~50℃,保温一定时间,然后快速冷却(一般为油冷或水冷),从

而得马氏体的一种操作。

回火:将淬火钢重新加热到A1点以下的某一温度,保温一定时间后,冷却到室温的一种操作。 冷处理:把冷到室温的淬火钢继续放到深冷剂中冷却,以减少残余奥氏体的操作。

时效处理:为使二次淬火层的组织稳定,在110~150℃经过6~36小时的人工时效处理,以使组织稳定。 5)淬火临界冷却速度(Vk),淬透性,淬硬性;

答:淬火临界冷却速度(Vk):淬火时获得全部马氏体组织的最小冷却速度。

淬透性:钢在淬火后获得淬硬层深度大小的能力。 淬硬性:钢在淬火后获得马氏体的最高硬度。 6)再结晶、重结晶;

答:再结晶:金属材料加热到较高的温度时,原子具有较大的活动能力,使晶粒的外形开始变化。从

破碎拉长的晶粒变成新的等轴晶粒。和变形前的晶粒形状相似,晶格类型相同,把这一阶段称为“再结晶”。

重结晶:由于温度变化,引起晶体重新形核、长大,发生晶体结构的改变,称为重结晶。 7)调质处理、变质处理。

答:调质处理:淬火后的高温回火。

变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的

固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒。

3.指出 A1、A3、Acm; AC1、AC3、 Accm ; Ar1、Ar3、Arcm 各临界点的意义。

答:A1:共析转变线,含碳量在0.02~6.69%的铁碳合金冷却到727℃时都有共析转变发生,形成P。 A3:奥氏体析出铁素体的开始线。 Acm:碳在奥氏体中的溶解度曲线。 AC1:实际加热时的共析转变线。

AC3:实际加热时奥氏体析出铁素体的开始线。 Acm:实际加热时碳在奥氏体中的溶解度曲线。

6

Ar1:实际冷却时的共析转变线。

Ar3:实际冷却时奥氏体析出铁素体的开始线。 Arcm:实际冷却时碳在奥氏体中的溶解度曲线。

4.何谓本质细晶粒钢?本质细晶粒钢的奥氏体晶粒是否一定比本质粗晶粒钢的细?

答:(1)本质细晶粒钢:加热到临界点以上直到930℃,随温度升高,晶粒长大速度很缓慢,称本质细

晶粒钢。

(2)不一定。本质晶粒度只代表钢在加热时奥氏体晶粒长大倾向的大小。本质粗晶粒钢在较低加热

温度下可获得细晶粒,而本质细晶粒钢若在较高温度下加热也会得到粗晶粒。

5.珠光体类型组织有哪几种?它们在形成条件、组织形态和性能方面有何特点? 答:(1)三种。分别是珠光体、索氏体和屈氏体。

(2)珠光体是过冷奥氏体在550℃以上等温停留时发生转变,它是由铁素体和渗碳体组成的片层相间

的组织。索氏体是在650~600℃温度范围内形成层片较细的珠光体。屈氏体是在600~550℃温度范围内形成片层极细的珠光体。珠光体片间距愈小,相界面积愈大,强化作用愈大,因而强度和硬度升高,同时,由于此时渗碳体片较薄,易随铁素体一起变形而不脆断,因此细片珠光体又具有较好的韧性和塑性。

6.贝氏体类型组织有哪几种?它们在形成条件、组织形态和性能方面有何特点? 答:(1)两种。上贝氏体和下贝氏体。

(2)上贝氏体的形成温度在600~350℃。在显微镜下呈羽毛状,它是由许多互相平行的过饱和铁素

体片和分布在片间的断续细小的渗碳体组成的混合物。其硬度较高,可达HRC40~45,但由于其铁素体片较粗,因此塑性和韧性较差。下贝氏体的形成温度在350℃~Ms,下贝氏体在光学显微镜下呈黑色针叶状,在电镜下观察是由针叶状的铁素体和分布在其上的极为细小的渗碳体粒子组成的。下贝氏体具有高强度、高硬度、高塑性、高韧性,即具有良好的综合机械性能。

7.马氏体组织有哪几种基本类型?它们在形成条件、晶体结构、组织形态、性能有何特点?马氏体的硬度与含碳量关系如何?

答:(1)两种,板条马氏体和片状马氏体。

(2)奥氏体转变后,所产生的M的形态取决于奥氏体中的含碳量,含碳量<0.6%的为板条马氏体;含

碳量在0.6—1.0%之间为板条和针状混合的马氏体;含碳量大于1.0%的为针状马氏体。低碳马氏体的晶体结构为体心立方。随含碳量增加,逐渐从体心立方向体心正方转变。含碳量较高的钢的晶体结构一般出现体心正方。低碳马氏体强而韧,而高碳马氏体硬而脆。这是因为低碳马氏体中含碳量较低,过饱和度较小,晶格畸变也较小,故具有良好的综合机械性能。随含碳量增加,马氏体的过饱和度增加,使塑性变形阻力增加,因而引起硬化和强化。当含碳量很高时,尽管马氏体的硬度和强度很高,但由于过饱和度太大,引起严重的晶格畸变和较大的内应力,致使高碳马氏体针叶内产生许多微裂纹,因而塑性和韧性显著降低。 (3)随着含碳量的增加,钢的硬度增加。

8.何谓等温冷却及连续冷却?试绘出奥氏体这两种冷却方式的示意图。

答:等温冷却:把奥氏体迅速冷却到Ar1以下某一温度保温,待其分解转变完成后,再冷至室温的一种冷却

转变方式。

连续冷却:在一定冷却速度下,过冷奥氏体在一个温度范围内所发生的转变。

7

9.为什么要对钢件进行热处理?

答:通过热处理可以改变钢的组织结构,从而改善钢的性能。热处理可以显著提高钢的机械性能,延长机

器零件的使用寿命。恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷,细化晶粒、消除偏析、降低内应力,使钢的组织和性能更加均匀。

10.试比较共析碳钢过冷奥氏体等温转变曲线与连续转变曲线的异同点。

答:首先连续冷却转变曲线与等温转变曲线临界冷却速度不同。其次连续冷却转变曲线位于等温转变曲线

的右下侧,且没有C曲线的下部分,即共析钢在连续冷却转变时,得不到贝氏体组织。这是因为共析钢贝氏体转变的孕育期很长,当过冷奥氏体连续冷却通过贝氏体转变区内尚未发生转变时就已过冷到Ms点而发生马氏体转变,所以不出现贝氏体转变。

11.淬火临界冷却速度 Vk 的大小受哪些因素影响?它与钢的淬透性有何关系?

答:(1)化学成分的影响:亚共析钢中随着含碳量的增加,C曲线右移,过冷奥氏体稳定性增加,则Vk减

小,过共析钢中随着含碳量的增加,C曲线左移,过冷奥氏体稳定性减小,则Vk增大;合金元素中,除Co和Al(>2.5%)以外的所有合金元素,都增大过冷奥氏体稳定性,使C曲线右移,则Vk减小。

(2)一定尺寸的工件在某介质中淬火,其淬透层的深度与工件截面各点的冷却速度有关。如果工件截

面中心的冷速高于Vk,工件就会淬透。然而工件淬火时表面冷速最大,心部冷速最小,由表面至心部冷速逐渐降低。只有冷速大于Vk的工件外层部分才能得到马氏体。因此,Vk越小,钢的淬透层越深,淬透性越好。

12.将¢5mm的T8钢加热至760℃并保温足够时间,问采用什么样的冷却工艺可得到如下组织:珠光体,索氏体,屈氏体,上贝氏体,下贝氏体,屈氏体+马氏体,马氏体+少量残余奥氏体;在C曲线上描出工艺曲线示意图。

答:(1)珠光体:冷却至线~550℃范围内等温停留一段时间,再冷却下来得到珠光体组织。

索氏体:冷却至650~600℃温度范围内等温停留一段时间,再冷却下来得到索光体组织。 屈氏体:冷却至600~550℃温度范围内等温停留一段时间,再冷却下来得到屈氏体组织。 上贝氏体:冷却至600~350℃温度范围内等温停留一段时间,再冷却下来得到上贝氏体组织。 下贝氏体:冷却至350℃~Ms温度范围内等温停留一段时间,再冷却下来得到下贝氏体组织。 屈氏体+马氏体:以大于获得马氏体组织的最小冷却速度并小于获得珠光体组织的最大冷却速度连

续冷却,获得屈氏体+马氏体。

马氏体+少量残余奥氏体:以大于获得马氏体组织的最小冷却速度冷却获得马氏体+少量残余奥氏

体。

(2)

8

13.退火的主要目的是什么?生产上常用的退火操作有哪几种?指出退火操作的应用范围。

答:(1)均匀钢的化学成分及组织,细化晶粒,调整硬度,并消除内应力和加工硬化,改善钢的切削加工

性能并为随后的淬火作好组织准备。

(2)生产上常用的退火操作有完全退火、等温退火、球化退火、去应力退火等。

(3)完全退火和等温退火用于亚共析钢成分的碳钢和合金钢的铸件、锻件及热轧型材。有时也用于焊

接结构。球化退火主要用于共析或过共析成分的碳钢及合金钢。去应力退火主要用于消除铸件、锻件、焊接件、冷冲压件(或冷拔件)及机加工的残余内应力。

14.何谓球化退火?为什么过共析钢必须采用球化退火而不采用完全退火?

答:(1)将钢件加热到Ac1以上30~50℃,保温一定时间后随炉缓慢冷却至600℃后出炉空冷。

(2)过共析钢组织若为层状渗碳体和网状二次渗碳体时,不仅硬度高,难以切削加工,而且增大钢的

脆性,容易产生淬火变形及开裂。通过球化退火,使层状渗碳体和网状渗碳体变为球状渗碳体,以降低硬度,均匀组织、改善切削加工性。

15.确定下列钢件的退火方法,并指出退火目的及退火后的组织: 1)经冷轧后的15钢钢板,要求降低硬度;

答:再结晶退火。目的:使变形晶粒重新转变为等轴晶粒,以消除加工硬化现象,降低了硬度,消除内应

力。细化晶粒,均匀组织,消除内应力,降低硬度以消除加工硬化现象。组织:等轴晶的大量铁素体和少量珠光体。 2)ZG35的铸造齿轮

答:完全退火。经铸造后的齿轮存在晶粒粗大并不均匀现象,且存在残余内应力。因此退火目的:细化晶

粒,均匀组织,消除内应力,降低硬度,改善切削加工性。组织:晶粒均匀细小的铁素体和珠光体。 3)锻造过热后的60钢锻坯;

答:完全退火。由于锻造过热后组织晶粒剧烈粗化并分布不均匀,且存在残余内应力。因此退火目的:细

化晶粒,均匀组织,消除内应力,降低硬度,改善切削加工性。组织:晶粒均匀细小的少量铁素体和大量珠光体。

4)具有片状渗碳体的T12钢坯;

答:球化退火。由于T12钢坯里的渗碳体呈片状,因此不仅硬度高,难以切削加工,而且增大钢的脆性,

容易产生淬火变形及开裂。通过球化退火,使层状渗碳体和网状渗碳体变为球状渗碳体,以降低硬度,均匀组织、改善切削加工性。组织:粒状珠光体和球状渗碳体。 16.正火与退火的主要区别是什么?生产中应如何选择正火及退火?

答:与退火的区别是①加热温度不同,对于过共析钢退火加热温度在Ac1以上30~50℃而正火加热温度在

Accm以上30~50℃。②冷速快,组织细,强度和硬度有所提高。当钢件尺寸较小时,正火后组织:S,而退火后组织:P。

9

选择:(1)从切削加工性上考虑

切削加工性又包括硬度,切削脆性,表面粗糙度及对刀具的磨损等。

一般金属的硬度在HB170~230范围内,切削性能较好。高于它过硬,难以加工,且刀具磨损快;过低则切屑不易断,造成刀具发热和磨损,加工后的零件表面粗糙度很大。对于低、中碳结构钢以正火作为预先热处理比较合适,高碳结构钢和工具钢则以退火为宜。至于合金钢,由于合金元素的加入,使钢的硬度有所提高,故中碳以上的合金钢一般都采用退火以改善切削性。 (2)从使用性能上考虑

如工件性能要求不太高,随后不再进行淬火和回火,那么往往用正火来提高其机械性能,但若零件的形状比较复杂,正火的冷却速度有形成裂纹的危险,应采用退火。 (3)从经济上考虑

正火比退火的生产周期短,耗能少,且操作简便,故在可能的条件下,应优先考虑以正火代替退火。

17.指出下列零件的锻造毛坯进行正火的主要目的及正火后的显微组织:

(1)20钢齿轮 (2)45钢小轴 (3)T12钢锉刀

答:(1)目的:细化晶粒,均匀组织,消除内应力,提高硬度,改善切削加工性。组织:晶粒均匀细小的

大量铁素体和少量索氏体。

(2)目的:细化晶粒,均匀组织,消除内应力。组织:晶粒均匀细小的铁

素体和索氏体。

(3)目的:细化晶粒,均匀组织,消除网状Fe3CⅡ,为球化退火做组织准备,消除内应力。组织:索

氏体和球状渗碳体。

18.一批45钢试样(尺寸Φ15*10mm),因其组织、晶粒大小不均匀,需采用退火处理。拟采用以下几种退火工艺;

(1)缓慢加热至700℃,保温足够时间,随炉冷却至室温; (2)缓慢加热至840℃,保温足够时间,随炉冷却至室温; (3)缓慢加热至1100℃,保温足够时间,随炉冷却至室温;

问上述三种工艺各得到何种组织?若要得到大小均匀的细小晶粒,选何种工艺最合适?

答:(1)因其未达到退火温度,加热时没有经过完全奥氏体化,故冷却后依然得到组织、晶粒大小不均匀

的铁素体和珠光体。

(2)因其在退火温度范围内,加热时全部转化为晶粒细小的奥氏体,故冷却后得到组织、晶粒均匀细

小的铁素体和珠光体。

(3)因其加热温度过高,加热时奥氏体晶粒剧烈长大,故冷却后得到晶粒粗大的铁素体和珠光体。 要得到大小均匀的细小晶粒,选第二种工艺最合适。

19. 淬火的目的是什么?亚共析碳钢及过共析碳钢淬火加热温度应如何选择?试从获得的组织及性能等方面加以说明。

答:淬火的目的是使奥氏体化后的工件获得尽量多的马氏体并配以不同温度回火获得各种需要的性能。 亚共析碳钢淬火加热温度Ac3+(30~50℃),淬火后的组织为均匀而细小的马氏体。因为如果亚共析碳钢加热温度在Ac1~Ac3之间,淬火组织中除马氏体外,还保留一部分铁素体,使钢的强度、硬度降低。但温度不能超过Ac3点过高,以防奥氏体晶粒粗化,淬火后获得粗大马氏体。

过共析碳钢淬火加热温度Ac1+(30~50℃),淬火后的组织为均匀而细小的马氏体和颗粒状渗碳体及残余奥氏体的混合组织。如果加热温度超过Accm,渗碳体溶解过多,奥氏体晶粒粗大,会使淬火组织中马氏体针变粗,渗碳体量减少,残余奥氏体量增多,从而降低钢的硬度和耐磨性。淬火温度过高,淬火后易得到含有显微裂纹的粗片状马氏体,使钢的脆性增加。 20.常用的淬火方法有哪几种?说明它们的主要特点及其应用范围。

答:常用的淬火方法有单液淬火法、双液淬火法、等温淬火法和分级淬火法。

10

单液淬火法:这种方法操作简单,容易实现机械化,自动化,如碳钢在水中淬火,合金钢在油中淬火。

但其缺点是不符合理想淬火冷却速度的要求,水淬容易产生变形和裂纹,油淬容易产生硬度不足或硬度不均匀等现象。适合于小尺寸且形状简单的工件。

双液淬火法:采用先水冷再油冷的操作。充分利用了水在高温区冷速快和油在低温区冷速慢的优点,

既可以保证工件得到马氏体组织,又可以降低工件在马氏体区的冷速,减少组织应力,从而防止工件变形或开裂。适合于尺寸较大、形状复杂的工件。

等温淬火法:它是将加热的工件放入温度稍高于Ms的硝盐浴或碱浴中,保温足够长的时间使其完成B

转变。等温淬火后获得B下组织。下贝氏体与回火马氏体相比,在碳量相近,硬度相当的情况下,前者比后者具有较高的塑性与韧性,适用于尺寸较小,形状复杂,要求变形小,具有高硬度和强韧性的工具,模具等。

分级淬火法:它是将加热的工件先放入温度稍高于Ms的硝盐浴或碱浴中,保温2~5min,使零件内外

的温度均匀后,立即取出在空气中冷却。这种方法可以减少工件内外的温差和减慢马氏体转变时的冷却速度,从而有效地减少内应力,防止产生变形和开裂。但由于硝盐浴或碱浴的冷却能力低,只能适用于零件尺寸较小,要求变形小,尺寸精度高的工件,如模具、刀具等。

21.说明45钢试样(Φ10mm)经下列温度加热、保温并在水中冷却得到的室温组织:700℃,760℃,840℃,1100℃。

答:700℃:因为它没有达到相变温度,因此没有发生相变,组织为铁素体和珠光体。

760℃:它的加热温度在Ac1~Ac3之间,因此组织为铁素体、马氏体和少量残余奥氏体。

840℃:它的加热温度在Ac3以上,加热时全部转变为奥氏体,冷却后的组织为马氏体和少量残余奥氏

体。

1100℃:因它的加热温度过高,加热时奥氏体晶粒粗化,淬火后得到粗片状马氏体和少量残余奥氏体。 22.有两个含碳量为1.2%的碳钢薄试样,分别加热到780℃和860℃并保温相同时间,使之达到平衡状态,然后以大于VK的冷却速度至室温。试问:

(1)哪个温度加热淬火后马氏体晶粒较粗大?

答;因为860℃加热温度高,加热时形成的奥氏体晶粒粗大,冷却后得到的马氏体晶粒较粗大。

(2)哪个温度加热淬火后马氏体含碳量较多?

答;因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,奥氏体中含碳量增加,而奥氏体

向马氏体转变是非扩散型转变,所以冷却后马氏体含碳量较多。 (3)哪个温度加热淬火后残余奥氏体较多?

答:因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,使奥氏体中含碳量增加,降低钢

的Ms和Mf点,淬火后残余奥氏体增多。 (4)哪个温度加热淬火后未溶碳化物较少?

答:因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,因此加热淬火后未溶碳化物较少

(5)你认为哪个温度加热淬火后合适?为什么?

答:780℃加热淬火后合适。因为含碳量为1.2%的碳钢属于过共析钢,过共析碳钢淬火加热温度Ac1+(30~

50℃),而780℃在这个温度范围内,这时淬火后的组织为均匀而细小的马氏体和颗粒状渗碳体及残余奥氏体的混合组织,使钢具有高的强度、硬度和耐磨性,而且也具有较好的韧性。 23.指出下列工件的淬火及回火温度,并说明其回火后获得的组织和大致的硬度:

(1)45钢小轴(要求综合机械性能); (2)60钢弹簧; (3)T12钢锉刀。

答:(1)45钢小轴(要求综合机械性能),工件的淬火温度为850℃左右,回火温度为500℃~650℃左右,

其回火后获得的组织为回火索氏体 ,大致的硬度25~35HRC。

11

(2)60钢弹簧,工件的淬火温度为850℃左右,回火温度为350℃~500℃左右,其回火后获得的组

织为回火屈氏体 ,大致的硬度40~48HRC。

(3)T12钢锉刀,工件的淬火温度为780℃左右,回火温度为150℃~250℃,其回火后获得的组织为回火马氏体 ,大致的硬度60HRC。

24.为什么工件经淬火后往往会产生变形,有的甚至开裂?减小变形及防止开裂有哪些途径?

答:淬火中变形与开裂的主要原因是由于淬火时形成内应为。淬火内应力形成的原因不同可分热应力与组

织应力两种。

工件在加热和(或)冷却时由于不同部位存在着温度差别而导致热胀和(或)冷缩不一致所引起的应力称为热应力。热应力引起工件变形特点时:使平面边为凸面,直角边钝角,长的方向变短,短的方向增长,一句话,使工件趋于球形。

钢中奥氏体比体积最小,奥氏体转变为其它各种组织时比体积都会增大,使钢的体积膨胀;工件淬火时各部位马氏体转变-先后不一致,因而体积膨胀不均匀。这种由于热处理过程中各部位冷速的差异使工件各部位相转变的不同时性所引起的应力,称为相变应力(组织应力)。组织应力引起工件变形的特点却与此相反:使平面变为凹面,直角变为钝角,长的方向变长;短的方向缩短,一句话,使尖角趋向于突出。

工件的变形与开裂是热应力与组织应力综合的结果,但热应力与组织应力方向恰好相反,如果热处理适当,它们可部分相互抵消,可使残余应力减小,但是当残余应力超过钢的屈服强度时,工件就发生变形,残余应力超过钢的抗拉强度时,工件就产生开裂。为减小变形或开裂,出了正确选择钢材和合理设计工件的结构外,在工艺上可采取下列措施: 1.采用合理的锻造与预先热处理

锻造可使网状、带状及不均匀的碳化物呈弥散均匀分布。淬火前应进行预备热处理(如球化退火与正火),不但可为淬火作好组织准备,而且还可消除工件在前面加工过程中产生的内应力。 2.采用合理的淬火工艺;

正确确定加热温度与加热时间,可避免奥氏体晶粒粗化。对形状复杂或导热性差的高合金钢,应缓慢加热或多次预热,以减少加热中产生的热应力。工件在加热炉中安放时,要尽量保证受热均匀,防止加热时变形;选择合适的淬火冷却介质和洋火方法(如马氏体分级淬火、贝氏体等温淬火),以减少冷却中热应力和相变应力等。 3.淬火后及时回火

淬火内应力如不及时通过回火来消除,对某些形状复杂的或碳的质量分数较高的工件,在等待回火期间就会发生变形与开裂。

4.对于淬火易开裂的部分,如键槽,孔眼等用石棉堵塞。

25.淬透性与淬硬层深度两者有何联系和区别?影响钢淬透性的因素有哪些?影响钢制零件淬硬层深度的因素有哪些?

答:淬透性是指钢在淬火时获得淬硬层的能力。不同的钢在同样的条件下淬硬层深不同,说明不同的钢淬

透性不同,淬硬层较深的钢淬透性较好。淬硬性:是指钢以大于临界冷却速度冷却时,获得的马氏体组织所能达到的最高硬度。钢的淬硬性主要决定于马氏体的含碳量,即取决于淬火前奥氏体的含碳量。 影响淬透性的因素: ① 化学成分

C曲线距纵坐标愈远,淬火的临界冷却速度愈小,则钢的淬透性愈好。对于碳钢,钢中含碳量愈接近共析成分,其C曲线愈靠右,临界冷却速度愈小,则淬透性愈好,即亚共析钢的淬透性随含碳量增加而增大,过共析钢的淬透性随含碳量增加而减小。除Co和Al(>2.5%)以外的大多数合金元素都使C曲线右移,使钢的淬透性增加,因此合金钢的淬透性比碳钢好。 ② 奥氏体化温度

温度愈高,晶粒愈粗,未溶第二相愈少,淬透性愈好。

12

26.钢的淬硬层深度通常是怎规定的?用什么方法测定结构钢的淬透性?怎样表示钢的淬透性值。 答:为了便于比较各种钢的淬透性,常利用临界直径Dc来表示钢获得淬硬层深度的能力。所谓临界直径就

是指圆柱形钢棒加热后在一定的淬火介质中能全部淬透的最大直径。

对同一种钢Dc油<Dc水,因为油的冷却能力比水低。目前国内外都普遍采用“顶端淬火法”测定钢的淬透性曲线,比较不同钢的淬透性。

“顶端淬火法”——国家规定试样尺寸为φ25×100mm;水柱自由高度65mm;此外应注意加热过程中防止氧化,脱碳。将钢加热奥氏体化后,迅速喷水冷却。显然,在喷水端冷却速度最大,沿试样轴向的冷却速度逐渐减小。据此,末端组织应为马氏体,硬度最高,随距水冷端距离的加大,组织和硬度也相应变化,将硬度随水冷端距离的变化绘成曲线称为淬透性曲线。

不同钢种有不同的淬透性曲线,工业上用钢的淬透性曲线几乎都已测定,并已汇集成册可查阅参考。由淬透性曲线就可比较出不同钢的淬透性大小。

此外对于同一种钢,因冶炼炉冷不同,其化学成分会在一个限定的范围内波动,对淬透性有一定的影响,因此钢的淬透性曲线并不是一条线,而是一条带,即表现出“淬透性带”。钢的成分波动愈小,淬透性带愈窄,其性能愈稳定,因此淬透性带愈窄愈好。

27.回火的目的是什么?常用的回火操作有哪几种?指出各种回火操作得到的组织、性能及其应用范围。 答:回火的目的是降低淬火钢的脆性,减少或消除内应力,使组织趋于稳定并获得所需要的性能。

常用的回火操作有低温回火、中温回火、高温回火。

低温回火得到的组织是回火马氏体。内应力和脆性降低,保持了高硬度和高耐磨性。这种回火主要应用于高碳钢或高碳合金钢制造的工、模具、滚动轴承及渗碳和表面淬火的零件,回火后的硬度一般为HRC 58-64。

中温回火后的组织为回火屈氏体,硬度HRC35-45,具有一定的韧性和高的弹性极限及屈服极限。这种回火主要应用于含碳0.5-0.7%的碳钢和合金钢制造的各类弹簧。

高温回火后的组织为回火索氏体,其硬度HRC 25-35,具有适当的强度和足够的塑性和韧性。这种回火主要应用于含碳0.3-0.5% 的碳钢和合金钢制造的各类连接和传动的结构零件,如轴、连杆、螺栓等。

28.指出下列组织的主要区别:

(1)索氏体与回火索氏体; (2)屈氏体与回火屈氏体; (3)马氏体与回火马氏体。

答:由奥氏体冷却转变而成的屈氏体(淬火屈氏体)和索氏体(淬火索氏体)组织,与由马氏体分解所得到的回

火屈氏体和回火索氏体组织有很大的区别,主要是碳化物的形态不同。由奥氏体直接分解的屈氏体及索氏体中的碳化物是片状的,而由马氏体分解的回火屈氏体与回火索氏体中碳化物是颗粒状的。回火索氏体和回火屈氏体相对于索氏体与屈氏体其塑性和韧性较好。马氏体(M)是由A 直接转变成碳在α—Fe中过饱和固溶体。回火马氏体是过饱和的α固溶体(铁素体)和与其晶格相联系的ε碳化物所组成,其淬火内应力和脆性得到降低。

30.化学热处理包括哪几个基本过程?常用的化学热处理方法有哪几种?

答:化学热处理是把钢制工件放置于某种介质中,通过加热和保温,使化学介质中某些元素渗入到工件表

层,从而改变表层的化学成分,使心部与表层具有不同的组织与机械性能。 化学热处理的过程:

1 分解:化学介质要首先分解出具有活性的原子; 2 吸收:工件表面吸收活性原子而形成固溶体或化合物;

3 扩散:被工件吸收的活性原子,从表面想内扩散形成一定厚度的扩散层。 常用的化学热处理方法有:渗碳、氮化、碳氮共渗、氮碳共渗。 31.试述一般渗碳件的工艺路线,并说明其技术条件的标注方法。

13

答:一般渗碳件的工艺路线为:

下料→锻造→正火→切削加工→渡铜(不渗碳部位)→渗碳→淬火→低温回火→喷丸→精磨→成品 32.氮化的主要目的是什么?说明氮化的主要特点及应用范围。

答:在一定温度(一般在AC1以下)使活性氮原子渗入工件表面的化学热处理工艺称为渗氮。其目的是提高工

件表面硬度、耐磨性、耐蚀性及疲劳强度。氮化的主要特点为:1)工件经渗氮后表面形成一层极硬的合金氮化物(如CrN、MoN、AIN等),渗氮层的硬度一般可达950~1200HV(相当于68-72HRC),且渗氮层具有高的红硬性(即在600~650℃仍有较高硬度)。2)工件经渗氮后渗氮层体积增大,造成表面压应力,使疲劳强度显著提高。3)渗氮层的致密性和化学稳定性均很高,因此渗氮工件具有高的耐蚀性。4)渗温度低,渗氮后又不再进行热处理,所以工件变形小,一般只需精磨或研磨、抛光即可。

渗氮主要用于要求耐磨性和精密度很高的各种高速传动的精密齿轮、高精度机床主轴(如锺轴、磨床主轴)、分配式液压泵转子,交变载荷作用下要求疲劳强度高的零件(高速柴油机曲轴),以及要求变形小和具有一定耐热、抗蚀能力的耐磨零件(阀门)等。

33.试说明表面淬火、渗碳、氮化热处理工艺在用钢、性能、应用范围等方面的差别。

答:表面淬火一般适用于中碳钢(0.4~0.5%C)和中碳低合金钢(40Cr、40MnB等),也可用于高碳工具钢,

低合金工具钢(如T8、9Mn2V、GCr15等)。以及球墨铸铁等。它是利用快速加热使钢件表面奥氏体化,而中心尚处于较低温度即迅速予以冷却,表层被淬硬为马氏体,而中心仍保持原来的退火、正火或调质状态的组织。应用范围:(1)高频感应加热表面淬火应用于中小模数齿轮、小型轴的表面淬火。(2)中频感应加热表面淬火主要用于承受较大载荷和磨损的零件,例如大模数齿轮、尺寸较大的曲轴和凸轮轴等。(3)工频感应加热表面淬火工频感应加热主要用于大直径钢材穿透加热和要求淬硬深度深的大直径零件,例如火车车轮、轧辘等的表面淬火。

渗碳钢都是含0.15~0.25%的低碳钢和低碳合金钢,如20、20Cr、20CrMnTi、20SiMnVB等。渗碳层深度一般都在0.5~2.5mm。

钢渗碳后表面层的碳量可达到0.8~1.1%C范围。渗碳件渗碳后缓冷到室温的组织接近于铁碳相图所反映的平衡组织,从表层到心部依次是过共析组织,共析组织,亚共析过渡层,心部原始组织。 渗碳主要用于表面受严重磨损,并在较大的冲载荷下工作的零件(受较大接触应力)如齿轮、轴类、套角等。

氮化用钢通常是含Al、Cr、Mo等合金元素的钢,如38CrMoAlA是一种比较典型的氮化钢,此外还有35CrMo、18CrNiW等也经常作为氮化钢。与渗碳相比、氮化工件具有以下特点: 1)氮化前需经调质处理,以便使心部组织具有较高的强度和韧性。 2)表面硬度可达HRC65~72,具有较高的耐磨性。

3)氮化表面形成致密氮化物组成的连续薄膜,具有一定的耐腐蚀性。 4)氮化处理温度低,渗氮后不需再进行其它热处理。

氮化处理适用于耐磨性和精度都要求较高的零件或要求抗热、抗蚀的耐磨件。如:发动机的汽缸、排气阀、高精度传动齿轮等。

34.拟用T10制造形状简单的车刀,工艺路线为: 锻造—热处理—机加工—热处理—磨加工

(1) 试写出各热处理工序的名称并指出各热处理工序的作用; (2) 指出最终热处理后的显微组织及大致硬度; (3) 制定最终热处理工艺规定(温度、冷却介质)

答:(1)工艺路线为:锻造—退火—机加工—淬火后低温回火—磨加工。退火处理可细化组织,调整硬度,

改善切削加工性;淬火及低温回火可获得高硬度和耐磨性以及去除内应力。 (2)终热处理后的显微组织为回火马氏体 ,大致的硬度60HRC。

(3)T10车刀的淬火温度为780℃左右,冷却介质为水;回火温度为150℃~250℃。

35.选择下列零件的热处理方法,并编写简明的工艺路线(各零件均选用锻造毛坯,并且钢材具有足够的

14

淬透性):

(1)某机床变速箱齿轮(模数m=4),要求齿面耐磨,心部强度和韧性要求不高,材料选用45钢; (2)某机床主轴,要求有良好的综合机械性能,轴径部分要求耐磨(HRC 50-55),材料选用45钢; (3)镗床镗杆,在重载荷下工作,精度要求极高,并在滑动轴承中运转,要求镗杆表面有极高的硬度,

心部有较高的综合机械性能,材料选用38CrMoALA。

答:(1)下料→锻造→正火→粗加工→精加工→局部表面淬火+低温回火→精磨→成品

(2)下料→锻造→正火→粗加工→调质→精加工→局部表面淬火+低温回火→精磨→成品 (3)下料→锻造→退火→粗加工→调质→精加工→氮化→研磨→成品

36.某型号柴油机的凸轮轴,要求凸轮表面有高的硬度(HRC>50),而心部具有良好的韧性(Ak>40J),原采用45钢调质处理再在凸轮表面进行高频淬火,最后低温回火,现因工厂库存的45钢已用完,只剩15钢,拟用15钢代替。试说明:

(1)原45钢各热处理工序的作用;

(2)改用15钢后,应按原热处理工序进行能否满足性能要求?为什么?

(3)改用15钢后,为达到所要求的性能,在心部强度足够的前提下采用何种热处理工艺? 答:(1)正火处理可细化组织,调整硬度,改善切削加工性;调质处理可获得高的综合机械性能和疲劳强

度;局部表面淬火及低温回火可获得局部高硬度和耐磨性。

(2)不能。改用15钢后按原热处理工序会造成心部较软,表面硬,会造成表面脱落。 (3)渗碳。

37.有甲、乙两种钢,同时加热至 1150 ℃,保温两小时,经金相显微组织检查,甲钢奥氏体晶粒度为 3 级,乙钢为 6 级。由此能否得出结论:甲钢是本质粗晶粒钢,而乙钢是本质细晶粒钢?

答:不能。本质晶粒度是在930±19℃,保温3~8小时后测定的奥氏体晶粒大小。本质细晶粒钢在加热到临

界点Acl以上直到930℃晶粒并未显著长大。超过此温度后,由于阻止晶粒长大的难溶质点消失,晶粒随即迅速长大。1150 ℃超过930℃,有可能晶粒随即迅速长大,所以不能的出结论甲钢是本质粗晶粒钢,而乙钢是本质细晶粒钢。

38.为什么用铝脱氧的钢及加入少量 Ti , Zr , V , Nb, W 等合金元素的钢都是本质细晶粒钢?奥氏体晶粒大小对转变产物的机械性能有何影响?

答:铝脱氧及加入少量 Ti , Zr , V , Nb, W 等合金元素会形成高温难溶的合金化合物,在930±19℃

左右抑制了晶粒的长大。所以加入以上合金元素的钢都是本质细晶粒钢。

39.钢获得马氏体组织的条件是什么?与钢的珠光体相变及贝氏体相变比较,马氏体相变有何特点? 答:钢获得马氏体组织的条件是:钢从奥氏体状态快速冷却,来不及发生扩散分解而发生无扩散型的相变。

马氏体相变的特点为:

(1)无扩散性。钢在马氏体转变前后,组织中固溶的碳浓度没有变化,马氏体和奥氏体中固溶的碳量一致,仅发生晶格改变,因而马氏体的转变速度极快。

(2)有共格位向关系。马氏体形成时,马氏体和奥氏体相界面上的原子是共有的,既属于马氏体,又属于奥氏体,称这种关系为共格关系。

(3)在通常情况下,过冷奥氏体向马氏体转变开始后,必须在不断降温条件下转变才能继续进行,冷却过程中断,转变立即停止。

40.说明共析钢 C 曲线各个区,各条线的物理意义,并指出影响 C 曲线形状和位置的主要因素。 答:过冷奥氏体等温转变曲线说明:

1)由过冷奥氏体开始转变点连接起来的曲线称为转变开始线;由转变终了点连接起来的曲线称为转变终了线。A 1线以右转变开始线以左的区域是过冷奥氏体区;A1线以下,转变终了线以右和Ms点以上的区域为转变产物区;在转变开始线与转变终了线之间的区域为过冷奥氏体和转变产物共存区。

15

2)过冷奥氏体在各个温度等温转变时,都要经过一段孕育期(它以转变开始线与纵坐标之间的水平距离来表示)。对共析碳钢来说,转变开始线在550℃出现拐弯,该处被称为C曲线的鼻尖,它所对应的温度称为鼻温。

3)共析碳钢的过冷奥氏体在三个不同温度区间,可发生三种不同的转变:在C曲线鼻尖以上部分,即A1~550℃之间过冷奥氏体发生珠光体转变,转变产物是珠光体,故又称珠光体转变;在C曲线鼻尖以下部分,即550℃~Ms之间,过冷奥氏体发生贝氏体转变,转变产物是贝氏体,故又称贝氏体转变;在Ms点:以下,过冷奥氏体发生马氏体转变,转变产物是马氏体,故又称马氏体转变。

亚共析和过共析钢的等温转变C曲线,与共析钢的不同是,亚共析钢的C曲线上多一条代表析出铁素体的线。过共析钢的C曲线上多一条代表二次渗碳体的析出线。 影响 C 曲线形状和位置的主要因素有:

凡是提高奥氏体稳定性的因素,都使孕育期延长,转变减慢,因而使C曲线右移。-反之,使C曲线左移。碳钢c曲线的位置与钢的含碳量有关,在亚共析钢中,随着含碳量的增加,钢的C曲线位置右移。在过共析钢中,随着含碳量的增加,c曲线又向左移。除此之外,钢的奥氏体化温度愈高,保温时间愈长,奥氏体晶粒愈粗大,则C曲线的位置愈右移。

41.将 20 钢及 60 钢同时加热至 860 ℃,并保温相同时间,问哪种钢奥氏体晶粒粗大些? 答:60 钢奥氏体晶粒粗大些。

1.为什么比较重要的大截面的结构零件如重型运输机械和矿山机器的轴类,大型发电机转子等都必须用合金钢制造?与碳钢比较,合金钢有何优缺点?

答: 碳钢制成的零件尺寸不能太大,否则淬不透,出现内外性能不均,对于一些大型的机械零件,(要求内外

性能均匀),就不能采用碳钢制作,比较重要的大截面的结构零件如重型运输机械和矿山机器的轴类,大型发电机转子等都必须用合金钢制造。 (1) 如上所述合金钢的淬透性高 (2)合金钢回火抗力高

碳钢淬火后,只有经低温回火才能保持高硬度,若其回火温度超过200℃,其硬度就显著下降。即回火抗力差,不能在较高的温度下保持高硬度,因此对于要求耐磨,切削速度较高,刃部受热超过200℃的刀具就不能采用碳钢制作而采用合金钢来制作。 (3)合金钢能满足一些特殊性能的要求

如耐热性、耐腐蚀性、耐低温性(低温下高韧性)。

2.合金元素Mn、Cr、W、Mo、V、Ti、Zr、Ni对钢的C曲线和MS点有何影响?将引起钢在热处理、组织和性能方面的什么变化?

答:除Co以外,大多数合金元素都增加奥氏体的稳定性,使C曲线右移。非碳化物形成元素Al、Ni、Si、

Cu等不改变C曲线的形状,只使其右移,碳化物形成元素Mn、Cr、Mo、W等除使C曲线右移外,还将C曲线分裂为珠光体转变的贝氏体转变两个C曲线,并在此二曲线之间出现一个过冷奥氏体的稳定区。除Co、Al外,其他合金元素均使Ms点降低,残余奥氏体量增多。

由于合金元素的加入降低了共析点的碳含量、使C曲线右移, 从而使退火状态组织中的珠光体的比例增大, 使珠光体层片距离减小, 这也使钢的强度增加, 塑性下降。 由于过冷奥氏体稳定性增大, 合金钢在正火状态下可得到层片距离更小的珠光体, 或贝氏体甚至马氏体组织, 从而强度大为增加。Mn、Cr、Cu的强化作用较大, 而Si、Al、V、Mo等在一般含量(例如一般结构钢的实际含量)下影响很小。合金元素都提高钢的淬透性, 促进马氏体的形成, 使强度大为增加但焊接性能变坏。 3.合金元素对回火转变有何影响?

答;合金元素对回火转变及性能的影响如下:

1.产生二次硬化

由于合金元素的扩散慢并阻碍碳的扩散,还阻碍碳化物的聚集和长大,因而合金钢中的碳化物在较高的回火温度时,仍能保持均匀弥散分布的细小碳化物的颗粒。强碳化物形成元素如Cr、W、Mo、V等,

16

在含量较高及在一定回火温度下,还将沉淀析出各自的特殊碳化物。如Mo2C、W2C、VC等,析出的碳化物高度弥散分布在马氏体基体上,并与马氏体保持共格关系,阻碍位错运动,使钢的硬度反而有所提高,这就形成了二次硬化。钢的硬度不仅不降低,反而再次提高。

在合金钢中,当含有W、Mo、Ti、V、Si等,它们一般都推迟a相的回复与再结晶和碳化物的聚集,从而可抑制钢的硬度、强度的降低。 2.提高淬火钢的回火稳定性(耐回火性)

由于合金元素阻碍马氏体分解和碳化物聚集长大过程,使回火的硬度降低过程变缓,从而提高钢的回火稳定性。由于合金钢的回火稳定性比碳钢高,若要得到相同的回火硬度时,则合金钢的回火温度就比同样含碳量的碳钢要高,回火时间也长。而当回火温度相同时,合金钢的强度、硬度都比碳钢高。 3.回火时产生第二类回火脆性

在合金钢中,除了有低温回火脆性外,在含有Cr、Ni、Mn等元素的钢中,在550~650℃回火后,又出现了冲击值的降低(如图8),称为高温回火脆性或第二类回火脆性。此高温回火脆性为可逆回火脆性,或第二类回火脆性。产生这类回火脆性的原因,一般认为是由于锡、磷、锑、砷等有害元素沿奥氏体晶界偏聚,减弱了晶界上原子间的结合力所致。 4.解释下列现象:

(1)在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高;

答:在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高,其

主要原因是合金元素的加入而改变了碳在钢中的扩散速度所致。非碳化物形成元素如Ni、Co,可降低碳在奥氏体中的扩散激活能,增加奥氏体形成速度。相反,强碳化物形成元素如v、Ti、w、Mo等,与碳有较大的亲合力,增加碳在奥氏体中的扩散激活能,强烈地减缓碳在钢中的扩散,大大减慢了奥氏体化的过程。

奥氏体形成后,尚未固溶的各种类型的碳化物,其稳定性各不相同。稳定性高的碳化物,要使之完全分解和固溶于奥氏体中,需要进一步提高加热温度,这类合金元素将使奥氏体化的时间增长。 合金钢中奥氏体化过程还包括均匀化的过程。它不但需要碳的扩散,而且合金元素也必需要扩散。但合金元素的扩散速度很慢,即使在1000℃的高温下,也仅是碳扩散速度的万分之几或干分之几。因此,合金钢的奥氏体成分均匀化比碳钢更缓慢。以保证合金元素溶入奥氏体并使之均匀化,从而充分发挥合金元素的作用。

(2) 在相同含碳量情况下,含碳化物形成元素的合金钢比碳钢具有较高的回火稳定性; 答:当温度超过150℃以后,强碳化物形成元素可阻碍碳的扩散,因而提高了马氏体分解温度。与碳钢相比,

合金钢中的残余奥氏体要在更高的回火温度才能转变。在高合金钢中残余奥氏体十分稳定,甚至加热到500~600℃并保温一段时间仍不分解。合金元素的扩散慢并阻碍碳的扩散,阻碍了碳化物的聚集和长大,使回火的硬度降低过程变缓,从而提高钢的回火稳定性。由于合金钢的回火稳定性比碳钢高,若要得到相同的回火硬度时,则合金钢的回火温度就比同样含碳量的碳钢要高,回火时间也长。而当回火温度相同时,合金钢的强度、硬度都比碳钢高。

(3) 含碳量≥0.40%、含铬12%的铬钢属于过共析钢,而含碳1.5%、含铬12%的钢属于莱氏体钢; 答:由于合金元素加入后显著改变了S点的位置,使它向碳含量减少的方向移动。所以含碳量≥0.40%、含

铬12%的铬钢属于过共析钢,而含碳1.5%、含铬12%的钢属于莱氏体钢 (4) 高速钢在热锻或热轧后,经空冷获得马氏体组织。

答:由于钢中含有大量的合金元素,高速钢的过冷奥氏体非常稳定,因而钢的淬透性很高。对于中、小型

刃具在热锻或热轧后,经空冷可获得马氏体组织。

5.何谓调质钢?为什么调质钢的含碳量均为中碳?合金调质钢中常含哪些合金元素?它们在调质钢中起什么作用?

答:通常把经调质处理后才使用的钢称为调质钢。从碳含量上看,低碳钢在淬火及低温回火状态虽具有良

17

好的综合机械性能,但它的疲劳极限低于中碳钢,淬透性也不如中碳钢。高碳钢虽然强度高,但它的韧性及塑性很低。因此,调质钢的含碳量均为中碳。

合金调质钢中常含合金元素有铬、锰、镍、硅、钼、钨、钒、铝、钛等。合金调质钢的主加元素有铬、锰、镍、硅等,以增加淬透性。它们在钢中除增加淬透性外,还能强化铁素体,起固溶强化作用。辅加元素有钼、钨、钒、铝、钛等。钼、钨的主要作用是防止或减轻第二类回火脆性,并增加回火稳定性;钒、钛的作用是细化晶粒;加铝能加速渗氮过程。

6.W18Cr4V钢的Ac1约为820℃,若以一般工具钢Ac1+30-50℃常规方法来确定淬火加热温度,在最终热处理后能否达到高速切削刃具所要求的性能?为什么?W18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,又是为什么?

答:若以一般工具钢Ac1+30-50℃常规方法来确定W18Cr4V钢淬火加热温度,在最终热处理后不能达到高速

切削刃具所要求的性能。因为若按常规方法来确定淬火加热温度,则合金碳化物不易溶解,不能满足在高速切削时刀具应保持红硬性、高耐磨性的要求。为使奥氏体得到足够的合金化,必须加热到远远大于Ac1的温度,既1280℃左右。18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,这是为消除残余奥氏体。

7、产生加工硬化的原因是什么?加工硬化在金属加工中有什么利弊?

答:①随着变形的增加,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎的亚晶粒,变形愈大,

晶粒破碎的程度愈大,这样使位错密度显著增加;同时细碎的亚晶粒也随着晶粒的拉长而被拉长。因此,随着变形量的增加,由于晶粒破碎和位错密度的增加,金属的塑性变形抗力将迅速增大,即强度和硬度显著提高,而塑性和韧性下降产生所谓“加工硬化”现象。②金属的加工硬化现象会给金属的进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。另一方面人们可以利用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是利用冷加工变形产生的加工硬化来提高钢丝的强度的。加工硬化也是某些压力加工工艺能够实现的重要因素。如冷拉钢丝拉过模孔的部分,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔的部分,这样钢丝才可以继续通过模孔而成形。

3.划分冷加工和热加工的主要条件是什么?

答:主要是再结晶温度。在再结晶温度以下进行的压力加工为冷加工,产生加工硬化现象;反之为热加工,

产生的加工硬化现象被再结晶所消除。

4.与冷加工比较,热加工给金属件带来的益处有哪些?

答:(1)通过热加工,可使铸态金属中的气孔焊合,从而使其致密度得以提高。

(2)通过热加工,可使铸态金属中的枝晶和柱状晶破碎,从而使晶粒细化,机械性能提高。 (3)通过热加工,可使铸态金属中的枝晶偏析和非金属夹杂分布发生改变,使它们沿着变形的方向细

碎拉长,形成热压力加工“纤维组织”(流线),使纵向的强度、塑性和韧性显著大于横向。如果合理利用热加工流线,尽量使流线与零件工作时承受的最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。

5.为什么细晶粒钢强度高,塑性,韧性也好?

答:晶界是阻碍位错运动的,而各晶粒位向不同,互相约束,也阻碍晶粒的变形。因此,金属的晶粒愈细,

其晶界总面积愈大,每个晶粒周围不同取向的晶粒数便愈多,对塑性变形的抗力也愈大。因此,金属的晶粒愈细强度愈高。同时晶粒愈细,金属单位体积中的晶粒数便越多,变形时同样的变形量便可分散在更多的晶粒中发生,产生较均匀的变形,而不致造成局部的应力集中,引起裂纹的过早产生和发展。因此,塑性,韧性也越好。

6.金属经冷塑性变形后,组织和性能发生什么变化?

答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向的强度和塑性远大于横向等;②晶粒破碎,位错

密度增加,产生加工硬化,即随着变形量的增加,强度和硬度显著提高,而塑性和韧性下降;③织构现象的产生,即随着变形的发生,不仅金属中的晶粒会被破碎拉长,而且各晶粒的晶格位向也会沿着

18

变形的方向同时发生转动,转动结果金属中每个晶粒的晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各部分的变形不均匀或晶粒内各部分和各晶粒间的变形不均匀,金属内部会7.分析加工硬化对金属材料的强化作用?

答:随着塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割、位错缠结加剧,使位错运

动的阻力增大,引起变形抗力的增加。这样,金属的塑性变形就变得困难,要继续变形就必须增大外力,因此提高了金属的强度。

8.已知金属钨、铁、铅、锡的熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工、铅和锡在室温(20℃)下的加工各为何种加工?

答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃; 铁T再=[0.4*(1538+273)]-273=451.4℃; 铅

T再=[0.4*(327+273)]-273=-33℃; 锡T再=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因此属于热加工;铁T再为451.4℃<1100℃,因此属于冷加工;铅T再为-33℃<20℃,属于热加工;锡T再为-71<20℃,属于热加工。

9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。试分析强化原因。 答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度的加工硬化层,使齿面的

强度、硬度升高。

何谓共晶反应、包晶反应和共析反应?试比较这三种反应的异同点.

答:共晶反应:指一定成分的液体合金,在一定温度下,同时结晶出成分和晶格均不相同的两种晶体的反

应。

包晶反应:指一定成分的固相与一定成分的液相作用,形成另外一种固相的反应过程。

共析反应:由特定成分的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固

相的反应。

共同点:反应都是在恒温下发生,反应物和产物都是具有特定成分的相,都处于三相平衡状态。 不同点:共晶反应是一种液相在恒温下生成两种固相的反应;共析反应是一种固相在恒温下生成两种固相的反应;而包晶反应是一种液相与一种固相在恒温下生成另一种固相的反应。 1简述冷却介质的选择原则。

答:(1)保证制品所需的冷却速率,且冷却均匀,使金属材料获得所需的组织和性能

(2)尽量减少制品在冷却时产生的内应力,制品不变形或变形不超过允许的限度,尤其不能开裂 (3)冷却介质与金属材料不发生或少发生有害的氧化、还原反应或其他物理化学反应,制品表面不被污染

或少被污染

(4)操作方便,无毒,成本低,易回收处理。

2 简述低温形变热处理对时效型合金性能的影响,并分析其原因。 答:冷变形的作用 i、 空位产生、位错增殖 ii、 破碎晶粒,形成纤维组织 iii、平衡内应力 组织分析:

冷变形引入大量的空位(团)和位错(形成位错网,位错网胞) , 提高储能,而低温时效时,基

体可能发生轻度或强烈回复,可能有大量空位、 位错、甚至亚晶界存在;(相比之下,未冷变形合金则晶粒仍为淬火态的晶粒(可能也有淬火空位(团) 、淬火位错,量少)),这样, 析出粒

形成残余的内应力,这在一般情况下都是不利的,会引起零件尺寸不稳定。

19

子有可能更弥散(位错形核,不局限于晶界,而且多边化?粒子→细晶,有利于颗粒均匀,PFZ减小或消除) 。然而,能量增高,处于亚稳态,而且组织有方向性,呈纤维组织。

性能分析(与普通热处理的相比):

缺陷密度增多,沉淀均匀,弥散强化效果提高;位错密度增大、形成亚晶界,增加亚结构强化;

因此,

i、 抗拉强度和屈服强度提高,但塑性降低,热稳定性下降; ii、 晶间腐蚀抗力提高(PFZ减小或消除) iii、 各向异性增大

3 简述固溶、时效处理时的脱溶序列并分析原因。 答:固溶处理时同一成分合金不同温度下可能的脱溶序列: 时效温度 可能的脱溶序列 高 平衡相 中 过渡相?平衡相 低 G、P区?过渡相?平衡相 原因:

时效时脱溶的一般顺序如下:偏聚区(或称G、P区)?过渡相(亚稳相)?平衡相 ( 预脱溶区) (脱溶区)

原因:脱溶时不直接析出平衡相的原因,是由于平衡相一般与基体形成新的非共格界面,界面能大,而亚

稳定的脱溶产物往往与基体完全或部分共格,界面能小。在相变初期界面能起决定性作用,界面能小的相,形核功小,容易形成。所以首先形成形核功最小的过渡结构,再演变成平衡稳定相。

1、什么是过冷度?为什么金属结晶时需要过冷度?

答:(1)过冷度:实际结晶温度与理论结晶温度之差称为过冷度。

(2)随着冷却速度的增大,则晶体内形核率和长大速度都加快,加速结晶过程的进行,但当冷速达到一定值以后则结晶过程将减慢,因为这时原子的扩散能力减弱。所以金属结晶时需要过冷度。 2、未进行冷加工的金属加热时能否发生回复与再结晶,为什么? 答:冷加工会使金属结构出现位错,空隙等,。。。。。 3、说明钢淬火后回火的必要性。

答:(1)消除或减小淬火钢件的内应力:钢件淬火时会产生热应力和组织应力,这些应力在钢中存在就是残余应力。此外,片状马氏体中可能有显微裂纹。残余应力和显微裂纹的存在可使钢变脆,为经回火的零件一般不能使用。

(2)调整性能:淬火刚强度、硬度高,而塑性、韧性低,这种性能无法满足多种多样的需要。经淬火后的不同温度回火,就可以保证钢件获得所需的性能。

(3)稳定组织和尺寸:通过回火,可使马氏体和残余奥氏体充分分解,从而起到稳定钢件组织和尺寸的作用。

此外,对于高淬透性的合金钢或莱氏体钢,可以用淬火一高温回火代替长时间的退火,使钢件软化,以利于切削加工。

1.上贝氏体和下贝氏体比较,哪一种力学性能好?为什么?

答:上贝氏体的强度和韧性较差 ,由于铁素体板条较宽 ,板条之间分布着不连续的条状渗碳体。下贝氏体的强度和韧性较好,由于 铁素体片细薄,碳化物弥散于片内。相比之下,下贝氏体不但强度高,而且韧性也很好,即具有优良的综合力学性能。

20

3)锻造过热后的60钢锻坯;

答:完全退火。由于锻造过热后组织晶粒剧烈粗化并分布不均匀,且存在残余内应力。因此退火目的:细化晶粒,均匀组织,消除内应力,降低硬度,改善切削加工性。组织:晶粒均匀细小的少量铁素体和大量珠光体。

4)具有片状渗碳体的T12钢坯;

答:球化退火。由于T12钢坯里的渗碳体呈片状,因此不仅硬度高,难以切削加工,而且增大钢的脆性,容易产生淬火变形及开裂。通过球化退火,使层状渗碳体和网状渗碳体变为球状渗碳体,以降低硬度,均匀组织、改善切削加工性。组织:粒状珠光体和球状渗碳体。

9何谓钢的热处理?钢的热处理操作有哪些基本类型?试说明热处理同其它工艺过程的关系及其在机械制造中的地位和作用。

答:(1)为了改变钢材内部的组织结构,以满足对零件的加工性能和使用性能的要求所施加的一种综合的热加工工艺过程。

(2)热处理包括普通热处理和表面热处理;普通热处理里面包括 退火、正火、淬火和回火,表面热处理包括表面淬火和化学热处理,表面淬火包括火焰加热表面淬火和感应加热表面淬火,化学热处理包括渗碳、渗氮和碳氮共渗等。

(3)热处理是机器零件加工工艺过程中的重要工序。一个毛坯件经过预备热处理,然后进行切削加工,再经过最终热处理,经过精加工,最后装配成为零件。热处理在机械制造中具有重要的地位和作用,适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料潜力、降低结构重量、节省材料和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命,做到一个顶几个、顶十几个。此外,通过热处理还可使工件表面具有抗磨损、耐腐蚀等特殊物理化学性能。

10.为什么要对钢件进行热处理?

答:通过热处理可以改变钢的组织结构,从而改善钢的性能。热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。恰当的热处理工艺可以消除铸、锻、焊等热加工工艺造成的各种缺陷,细化晶粒、消除偏析、降低内应力,使钢的组织和性能更加均匀。

11.退火的主要目的是什么?生产上常用的退火操作有哪几种?指出退火操作的应用范围。

答:(1)均匀钢的化学成分及组织,细化晶粒,调整硬度,并消除内应力和加工硬化,改善钢的切削加工性能并为随后的淬火作好组织准备。

(2)生产上常用的退火操作有完全退火、等温退火、球化退火、去应力退火等。

(3)完全退火和等温退火用于亚共析钢成分的碳钢和合金钢的铸件、锻件及热轧型材。有时也用于焊接结构。球化退火主要用于共析或过共析成分的碳钢及合金钢。去应力退火主要用于消除铸件、锻件、焊接件、冷冲压件(或冷拔件)及机加工的残余内应力。

13正火与退火的主要区别是什么?生产中应如何选择正火及退火?

答:与退火的区别是①加热温度不同,对于过共析钢退火加热温度在Ac1以上30~50℃而正火加热温度在Accm以上30~50℃。②冷速快,组织细,强度和硬度有所提高。当钢件尺寸较小时,正火后组织:S,而退火后组织:P。

选择:(1)从切削加工性上考虑

切削加工性又包括硬度,切削脆性,表面粗糙度及对刀具的磨损等。

一般金属的硬度在HB170~230范围内,切削性能较好。高于它过硬,难以加工,且刀具磨损快;过低则切屑不易断,造成刀具发热和磨损,加工后的零件表面粗糙度很大。对于低、中碳结构钢以正火作为预先热处理比较合适,高碳结构钢和工具钢则以退火为宜。至于合金钢,由于合金元素的加入,使钢的硬度有所提高,故中碳以上的合金钢一般都采用退火以改善切削性。

26

(2)从使用性能上考虑

如工件性能要求不太高,随后不再进行淬火和回火,那么往往用正火来提高其机械性能,但若零件的形状比较复杂,正火的冷却速度有形成裂纹的危险,应采用退火。 (3)从经济上考虑

正火比退火的生产周期短,耗能少,且操作简便,故在可能的条件下,应优先考虑以正火代替退火。

18有两个含碳量为1.2%的碳钢薄试样,分别加热到780℃和860℃并保温相同时间,使之达到平衡状态,然后以大于VK的冷却速度至室温。试问: (1)哪个温度加热淬火后马氏体晶粒较粗大?

答;因为860℃加热温度高,加热时形成的奥氏体晶粒粗大,冷却后得到的马氏体晶粒较粗大。 (2)哪个温度加热淬火后马氏体含碳量较多?

答;因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,奥氏体中含碳量增加,而奥氏体向马氏体转变是非扩散型转变,所以冷却后马氏体含碳量较多。 (3)哪个温度加热淬火后残余奥氏体较多?

答:因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,使奥氏体中含碳量增加,降低钢的Ms和Mf点,淬火后残余奥氏体增多。 (4)哪个温度加热淬火后未溶碳化物较少?

答:因为加热温度860℃已经超过了Accm,此时碳化物全部溶于奥氏体中,因此加热淬火后未溶碳化物较少

(5)你认为哪个温度加热淬火后合适?为什么?

答:780℃加热淬火后合适。因为含碳量为1.2%的碳钢属于过共析钢,过共析碳钢淬火加热温度Ac1+(30~50℃),而780℃在这个温度范围内,这时淬火后的组织为均匀而细小的马氏体和颗粒状渗碳体及残余奥氏体的混合组织,使钢具有高的强度、硬度和耐磨性,而且也具有较好的韧性。

19为什么工件经淬火后往往会产生变形,有的甚至开裂?减小变形及防止开裂有哪些途径?

答:淬火中变形与开裂的主要原因是由于淬火时形成内应为。淬火内应力形成的原因不同可分热应力与组织应力两种。

工件在加热和(或)冷却时由于不同部位存在着温度差别而导致热胀和(或)冷缩不一致所引起的应力称为热应力。热应力引起工件变形特点时:使平面边为凸面,直角边钝角,长的方向变短,短的方向增长,一句话,使工件趋于球形。

钢中奥氏体比体积最小,奥氏体转变为其它各种组织时比体积都会增大,使钢的体积膨胀;工件淬火时各部位马氏体转变-先后不一致,因而体积膨胀不均匀。这种由于热处理过程中各部位冷速的差异使工件各部位相转变的不同时性所引起的应力,称为相变应力(组织应力)。组织应力引起工件变形的特点却与此相反:使平面变为凹面,直角变为钝角,长的方向变长;短的方向缩短,一句话,使尖角趋向于突出。 工件的变形与开裂是热应力与组织应力综合的结果,但热应力与组织应力方向恰好相反,如果热处理适当,它们可部分相互抵消,可使残余应力减小,但是当残余应力超过钢的屈服强度时,工件就发生变形,残余应力超过钢的抗拉强度时,工件就产生开裂。为减小变形或开裂,出了正确选择钢材和合理设计工件的结构外,在工艺上可采取下列措施: 1.采用合理的锻造与预先热处理

锻造可使网状、带状及不均匀的碳化物呈弥散均匀分布。淬火前应进行预备热处理(如球化退火与正火),不但可为淬火作好组织准备,而且还可消除工件在前面加工过程中产生的内应力。 2.采用合理的淬火工艺;

正确确定加热温度与加热时间,可避免奥氏体晶粒粗化。对形状复杂或导热性差的高合金钢,应缓慢加热或多次预热,以减少加热中产生的热应力。工件在加热炉中安放时,要尽量保证受热均匀,防止加热时变形;

27

选择合适的淬火冷却介质和洋火方法(如马氏体分级淬火、贝氏体等温淬火),以减少冷却中热应力和相变应力等。

3.淬火后及时回火

淬火内应力如不及时通过回火来消除,对某些形状复杂的或碳的质量分数较高的工件,在等待回火期间就会发生变形与开裂。

4.对于淬火易开裂的部分,如键槽,孔眼等用石棉堵塞。

21回火的目的是什么?常用的回火操作有哪几种?指出各种回火操作得到的组织、性能及其应用范围。 答:回火的目的是降低淬火钢的脆性,减少或消除内应力,使组织趋于稳定并获得所需要的性能。 常用的回火操作有低温回火、中温回火、高温回火。

低温回火得到的组织是回火马氏体。内应力和脆性降低,保持了高硬度和高耐磨性。这种回火主要应用于高碳钢或高碳合金钢制造的工、模具、滚动轴承及渗碳和表面淬火的零件,回火后的硬度一般为HRC 58-64。

中温回火后的组织为回火屈氏体,硬度HRC35-45,具有一定的韧性和高的弹性极限及屈服极限。这种回火主要应用于含碳0.5-0.7%的碳钢和合金钢制造的各类弹簧。

高温回火后的组织为回火索氏体,其硬度HRC 25-35,具有适当的强度和足够的塑性和韧性。这种回火主要应用于含碳0.3-0.5% 的碳钢和合金钢制造的各类连接和传动的结构零件,如轴、连杆、螺栓等 23化学热处理包括哪几个基本过程?常用的化学热处理方法有哪几种?

答:化学热处理是把钢制工件放置于某种介质中,通过加热和保温,使化学介质中某些元素渗入到工件表层,从而改变表层的化学成分,使心部与表层具有不同的组织与机械性能。 化学热处理的过程:

1 分解:化学介质要首先分解出具有活性的原子; 2 吸收:工件表面吸收活性原子而形成固溶体或化合物;

3 扩散:被工件吸收的活性原子,从表面想内扩散形成一定厚度的扩散层。 常用的化学热处理方法有:渗碳、氮化、碳氮共渗、氮碳共渗。

24试述一般渗碳件的工艺路线,并说明其技术条件的标注方法。 答:一般渗碳件的工艺路线为:

下料→锻造→正火→切削加工→渡铜(不渗碳部位)→渗碳→淬火→低温回火→喷丸→精磨→成品 28选择下列零件的热处理方法,并编写简明的工艺路线(各零件均选用锻造毛坯,并且钢材具有足够的淬透性):

(1)某机床变速箱齿轮(模数m=4),要求齿面耐磨,心部强度和韧性要求不高,材料选用45钢; (2)某机床主轴,要求有良好的综合机械性能,轴径部分要求耐磨(HRC 50-55),材料选用45钢; (3)镗床镗杆,在重载荷下工作,精度要求极高,并在滑动轴承中运转,要求镗杆表面有极高的硬度,心部有较高的综合机械性能,材料选用38CrMoALA。

答:(1)下料→锻造→正火→粗加工→精加工→局部表面淬火+低温回火→精磨→成品 (2)下料→锻造→正火→粗加工→调质→精加工→局部表面淬火+低温回火→精磨→成品 (3)下料→锻造→退火→粗加工→调质→精加工→氮化→研磨→成品 30解释下列现象:

(1)在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高; 答:在相同含碳量情况下,除了含Ni和Mn的合金钢外,大多数合金钢的热处理加热温度都比碳钢高,其主要原因是合金元素的加入而改变了碳在钢中的扩散速度所致。非碳化物形成元素如Ni、Co,可降低碳在奥氏体中的扩散激活能,增加奥氏体形成速度。相反,强碳化物形成元素如v、Ti、w、Mo等,与碳有较大的亲合力,增加碳在奥氏体中的扩散激活能,强烈地减缓碳在钢中的扩散,大大减慢了奥氏体化的过程。

28

奥氏体形成后,尚未固溶的各种类型的碳化物,其稳定性各不相同。稳定性高的碳化物,要使之完全分解和固溶于奥氏体中,需要进一步提高加热温度,这类合金元素将使奥氏体化的时间增长。

合金钢中奥氏体化过程还包括均匀化的过程。它不但需要碳的扩散,而且合金元素也必需要扩散。但合金元素的扩散速度很慢,即使在1000℃的高温下,也仅是碳扩散速度的万分之几或干分之几。因此,合金钢的奥氏体成分均匀化比碳钢更缓慢。以保证合金元素溶入奥氏体并使之均匀化,从而充分发挥合金元素的作用。 (1)

在相同含碳量情况下,含碳化物形成元素的合金钢比碳钢具有较高的回火稳定性;

答:当温度超过150℃以后,强碳化物形成元素可阻碍碳的扩散,因而提高了马氏体分解温度。与碳钢相比,合金钢中的残余奥氏体要在更高的回火温度才能转变。在高合金钢中残余奥氏体十分稳定,甚至加热到500~600℃并保温一段时间仍不分解。合金元素的扩散慢并阻碍碳的扩散,阻碍了碳化物的聚集和长大,使回火的硬度降低过程变缓,从而提高钢的回火稳定性。由于合金钢的回火稳定性比碳钢高,若要得到相同的回火硬度时,则合金钢的回火温度就比同样含碳量的碳钢要高,回火时间也长。而当回火温度相同时,合金钢的强度、硬度都比碳钢高。

33W18Cr4V钢的Ac1约为820℃,若以一般工具钢Ac1+30-50℃常规方法来确定淬火加热温度,在最终热处理后能否达到高速切削刃具所要求的性能?为什么?W18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,又是为什么?

答:若以一般工具钢Ac1+30-50℃常规方法来确定W18Cr4V钢淬火加热温度,在最终热处理后不能达到高速切削刃具所要求的性能。因为若按常规方法来确定淬火加热温度,则合金碳化物不易溶解,不能满足在高速切削时刀具应保持红硬性、高耐磨性的要求。为使奥氏体得到足够的合金化,必须加热到远远大于Ac1的温度,既1280℃左右。18Cr4V钢刀具在正常淬火后都要进行560℃三次回火,这是为消除残余奥氏体。

34.钢的淬硬层深度通常是怎规定的?用什么方法测定结构钢的淬透性?怎样表示钢的淬透性值。 答:为了便于比较各种钢的淬透性,常利用临界直径Dc来表示钢获得淬硬层深度的能力。所谓临界直径就

是指圆柱形钢棒加热后在一定的淬火介质中能全部淬透的最大直径。

对同一种钢Dc油<Dc水,因为油的冷却能力比水低。目前国内外都普遍采用“顶端淬火法”测定钢的淬透性曲线,比较不同钢的淬透性。

“顶端淬火法”——国家规定试样尺寸为φ25×100mm;水柱自由高度65mm;此外应注意加热过程中防止氧化,脱碳。将钢加热奥氏体化后,迅速喷水冷却。显然,在喷水端冷却速度最大,沿试样轴向的冷却速度逐渐减小。据此,末端组织应为马氏体,硬度最高,随距水冷端距离的加大,组织和硬度也相应变化,将硬度随水冷端距离的变化绘成曲线称为淬透性曲线。

不同钢种有不同的淬透性曲线,工业上用钢的淬透性曲线几乎都已测定,并已汇集成册可查阅参考。由淬透性曲线就可比较出不同钢的淬透性大小。

此外对于同一种钢,因冶炼炉冷不同,其化学成分会在一个限定的范围内波动,对淬透性有一定的影响,因此钢的淬透性曲线并不是一条线,而是一条带,即表现出“淬透性带”。钢的成分波动愈小,淬透性带愈窄,其性能愈稳定,因此淬透性带愈窄愈好。

35 有一φ10mm的20#钢制工件,经渗碳热处理后空冷,随后进行正常的淬火、回火处理,试分析工件在渗碳空冷后以及淬火回火后,由表面到心部的组织。 答:1)渗碳空冷后:由表及里:

表面:网状渗碳体+珠光体 相当于 T12 平衡组织 次层:100% 珠光体 相当于 T8 平衡组织 再次层:珠光体+少量先共析铁素体 相当于 45#钢 平衡组织 心部: 大量先共析铁素体+少量珠光体 相当于20#钢 平衡组织 由表及里是逐渐过渡的。 2)渗碳淬火+回火处理:

29

表面:断续网状渗碳体+马氏体相当于 T12 淬火组织

次层:马氏体+少量碳化物+残余奥氏体 相当于 T8 淬火组织

再次层:混合马氏体组织 相当于 45#钢 亚温淬火组织 心部:先共析铁素体+马氏体 相当于20#钢 亚温淬火组织 由表及里是逐渐过渡的。

3某齿轮要求具有高的耐磨性,并承受一定的冲击载荷,拟采用下列材料和热处理工艺:

(1)45钢的淬火和低温回火;(2)45钢的高频淬火和低温回火;(3)T8钢淬火和中温回火;(4)20钢渗碳淬火和低温回火。你认为哪种工艺比较合适?为什么? 4确定下列零件的热处理工艺,并制定简明的工艺路线:

(1)某机床变速箱齿轮,要求齿面耐磨,心部强度和韧性要求不高,且选用45钢;

(2)某机床主轴,要求有良好的综合机械性能,轴颈部要求耐磨(50~55HRC),材料选用45钢; (3)柴油机凸轮轴,要求凸轮表面有较高的硬度(HRC>60),心部有较好的韧性(Ak>50J),材料选用15钢;

(4)镗床和镗杆,在重载荷作用下工作,并在滑动轴承中运转,要求镗杆表面有极高的硬度,心部有较高的综合力学性能,材料选用38CrMoAlA。

30

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库热处理试题及答案(中南大学)在线全文阅读。

热处理试题及答案(中南大学).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/196703.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219