历年广东高考数列题汇编 一 选择或填空题
(2011年)11.已知{an}是递增的等比数列,若a2?2,a4?a3?4,则此数列的公比
q? .
4.巳知等比数列{an}满足an?0,n?1,2,,且a5?a2n?5?22n(n?3),则当n?1时,
2log2a1?log2a3??log2a2n?1?
A.n(2n?1) B.(n?1)2 C.n D.(n?1)2
4.巳知数列{an}是等比数列,Sn 是它的前n项和,若a2?a3?2a1且a4与2a7的等差中项 为
5,则S5? 4A 35 B 33 C 31 D 29
6、已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为
A.5 B.4 C. 3 D. 2
13.已知数列{an}的前n项和Sn?n2?9n,则其通项an? ;若它的第k项满足
5?ak?8,则k? .
14、在德国不来梅举行的第48届世乒赛期间,某商店橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有1层,就一个球;第2,3,4,堆最底层(第一层)分别按图4所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n堆第n层就放一个乒乓球,以f(n)表示第n堆的乒乓球总数,则f(3)?_____;f(n)?_____(答案用n表示).
二.解答题
图4
…
1.(2007广东文20)已知函数f(x)?x2?x?1,?、?是方程f(x)?0的两个根(???),f?(x)是的导数,设a1?1,an?1?an?(1)求?、?的值;
(2)已知对任意的正整数n有an??,记bn?ln前n项和Sn.
f(an),(n?1,2,). f?(an)an??,(n?1,2,).求数列{bn}的
an???1?5 2?1?5?1?5 ??? ??
2220解:(1) 由 x?x?1?0 得x?222an?an?1an?1 (2) f??x??2x?1 an?1?an? ?2an?12an?1
an2?11?53?5?an2?1?5an?an?1??2an?122?2?an?1??an?11?53?5?an2?1?5an?2an?122?????1?5??an???a???22??n????1?5??an?????an???2? ? bn?1?2bn 又 b1?ln2
a1??3?5?ln?a1??3?51?5 4ln2?数列?bn?是一个首项为 4ln1?5,公比为2的等比数列; 24ln? Sn?
1?51?2n??1?52?4?2n?1?ln 1?221(an?1?2an?2)(n=3,4,…),数列?bn?满32. (2008广东文)设数列?an?满足a1?1,a2?2,an?足b1?1,bn(n?2,3,?)是非零整数,且对任意的正整数m 和自然数k,都有
?1?bm?bm?1???bm?k?1
(1)求数列?an?和?bn?的通项公式;
(2)若cn?nanbn(n?1,2,?),求数列?cn?的前n项和.
12解:(1)由an?(an?1?2an?2)得an?an?1??(an?1?an?2)(n?3)
332又a2?a1?1?0,所以数列{an?1?an}是以1为首项,公比为?的等比数列,
3?2?∴an?1?an????,
?3?而an?a1?(a2?a1)?(a3?a2)?(a4?a3)?n?1?(an?an?1)
n?1?2?1????2n?2n?183?2?3??2??2??2???1?1??????????????1??????;
255?3??3??3??3?1?3??1?b1?b2?1??1?b2?b3?1??由??1?b2?1 得b2??1,由??1?b3?1,得b3?1,…, ?b?Z,b?0?b?Z,b?023?2?3
同理可得当n为偶数时,bn??1;当n为奇数时,bn?1,因此bn???1,??1,当n为奇数时当n为偶数时
?83?2?n?1??????55?3?(2)cn?nanbn??n?1?83?2?????5?5??3??当n为奇数时,
8888Sn?(?2??3??4??55550当n为奇数时,则Sn?c1?c2??cn,
当n为偶数时n?101283??2??2??2??n)??1????2????3????55??3??3???3?12?2??n????3?????4(n?1)3??2??2??2????1????2????3????55??3??3???3?当n为偶数时,
?2??n????3?n?1?????2??n????3?n?1
8888Sn?(?2??3??4??55550101283??2??2??2??n)??1????2????3????55??3??3???3?2??????4n3??2??2??2???1????2????3????55??3??3???3?012?2??n????3?n?1n?1????
?2??2??2??2?令Tn?1????2????3?????n???…………………………①
?3??3??3??3?123n22?2??2??2??2?①?得Tn?1????2????3?????n???…………………②
33?3??3??3??3?①?②,得
n?2?1???123n?1nnn122222223??????????????Tn?1??????????????n??????n???3?(3?n)??∴
23?3??3??3??3??3??3??3?1?3?4n?239(n?3)?2?n?当n为奇数时?n??553????2? Tn?9?(9?3n)??,因此Sn??n3???4n?279(n?3)?2?当n为偶数时????5?5?3??3. (2009广东理21)已知曲线Cn:x2?2nx?y2?0(n?1,2,).从点P(?1,0)向曲线Cn引斜率为kn(kn?0)的切线ln,切点为Pn(xn,yn). (1)求数列{xn}与{yn}的通项公式;
(2)证明:x1?x3?x5?21.
?x2n?1?1?xnx?2sinn 1?xnynln:y?kn(x?1),联立x2?2nx?y2?0得
n2n?1解:(1)设直线
222222(1?kn)x2?(2kn?2n)x?kn?0,则??(2kn?2n)2?4(1?kn)kn?0,∴kn?
(?n2n?1舍去)
2knnn2n?1n2x?,即,∴ y?k(x?1)?x??nnnn22n?1n?11?kn(n?1)2nn1?xnn?1??(2)证明:∵
n1?xn1?n?11?1 2n?1x1?x3?x5?????x2n?1?132n?1132n?11 ??????????????242n352n?12n?1∴x1?x3?x5?????x2n?1?1?xn
1?xn由于
xn?yn1?xn1,可令函数f(x)?x?2sinx,则f'(x)?1?2cosx,令?2n?11?xnf'(x)?0,得cosx???2,给定区间(0,),则有f'(x)?0,则函数f(x)在(0,)上单调递
442减,∴f(x)?f(0)?0,即x??2sinx在(0,)恒成立,又0?411???,
2n?134则有
1?xnx11,即?2sin?2sinn.
2n?12n?11?xnyn.w.k.s.
13前n项和为f(n)?c数列?bn?(bn?0)的首项为c,且前n项和sn满足
x4.(2009广东文)已知点(1,)是函数f(x)?a(a?0,且a?1)的图像上一点。等比数列?an?的
Sn?Sn?1?Sn?Sn?1(n?2)。
(1) 求数列?an?和?bn?的通项公式; (2)若数列?
x20.解:∵ 点(1,)是函数f(x)?a(a?0,且a?1)的图像上一点,
?1?1000的最小正整数n是多少? ?的前n项和为Tn,问满足Tn?2009?bnbn?1?131?1?∴ f(1)?a?, 即f(x)???
3?3?x
n?1?设等比数列?an?的前n项和为An,依题意,得An=f(n)?c=???c,
?3?1 所以,当n=1 时, a1??c,
32?1??1??1?当n≥2 时, an?An?An?1??????????,
3?3??3??3?1?112?1?由数列?an?为等比数列,可知a1??c=???,解得c=1,
33?3?2?1?所以数列?an?的通项公式为an????3?3?数列?bn?(bn?0)的首项为b1?c?1,
前n项和sn满足Sn?Sn?1?n?1nn?1n?1?1???2?? n?N*。
?3?nSn?Sn?1(n?2)。
整理,得(Sn?Sn?1)(Sn?Sn?1?1)?0
由bn?0可知Sn?0,所以Sn?所以
Sn?1?0,Sn?Sn?1?1?0
Sn?Sn?1?1, 又S1?b1?1,即S1?1
∴数列{Sn}是首项为1,公差为1的等差数列,Sn?1?(n?1)?1?n
∴Sn?n2
当n≥2 时, bn?Sn?Sn?1?n2??n?1??2n?1,
2又当n=1 时,2n-1=1=b1,符合以上公式,
所以,数列?bn?的通项公式为bn?2n?1(n?N)。
*(2)由(1)知
111?11??????
bnbn?1(2n?1)(2n?1)2?2n?12n?1?所以,数列??1??的前n项和为
?bnbn?1?1??11??11??11?1??11???1Tn=???????????????????????
2??13??35??57?2n?32n?12n?12n?1?????1?1?n =?1? ??2?2n?1?2n?1n100010001??111 令Tn=,解得n?2n?12009991000所以,满足Tn?的最小正整数n是112.
20095.(2010广东文)已知曲线Cn:y?nx2,点Pn(xn,yn)(xn?0,yn?0)是曲线Cn上的点
(n?1,2,...,)
20.(本小题满分14分)
设b?0,数列{an}满足a1?b,an?(1)求数列{an}的通项公式; (2)证明:对于一切正整数n,2an≤b20.(1)解:∵an?n?1nban?1(n≥2).
an?1?n?1?1.
nban?1
an?1?n?1aban?1∴n? nan?1?n?1n1n?11∴??? anban?1bnn?1n① 当b?1时,??1,则{}是以1为首项,1为公差的等差数列
anan?1ann∴?1?(n?1)?1?n,即an?1 ann11n?11② 当b?0且b?1时,??(?)
an1?bban?11?bn11??当n?1时, an1?bb(1?b)11n1∴{?为首项,为公比的等比数列 }是以
bb(1?b)an1?b
∴
n111???()n an1?b1?bbn111?bn∴ ???nnan(1?b)b1?b(1?b)bn(1?b)bn∴an?
1?bn?n(1?b)bn, b?0且b?1?综上所述an??1?bn
?1, b?1 ?(2)证明:① 当b?1时,2an?bn?1?1?2;
② 当b?0且b?1时,1?bn?(1?b)(1?b?n?1?bn?2?bn?1)
2n(1?b)bnn?1?b?1, 要证2an?b?1,只需证n1?b2n(1?b)1?b?即证
1?bnbn2n1?b?即证
1?b??bn?2?bn?1bn1n?2n?1即证(b?n)(1?b??b?b)?2n
b11112n?1n即证(b?b??b?b)?(n?n?1??2?)?2n
bbbb11112n?1n∵(b?b??b?b)?(n?n?1??2?)
bbbb1111?(b?)?(b2?2)??(bn?1?n?1)?(bn?n)
bbbb1111?2b??2b2?2??2bn?1?n?1?2bn?n?2n,∴原不等式成立
bbbbn?1∴对于一切正整数n,2an≤b?1.
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库历年广东数列高考题汇编在线全文阅读。
相关推荐: