(数学必修5)第二章 数列 [基础训练A组]
一、选择题
1.在数列1,1,2,3,5,8,x,21,34,55中,x等于
A.11 B.12 C.13 D.14 2.等差数列{an}中,a1?a4?a7?39,a3?a6?a9?27,则数列{an}前9项的和S9等于 A.66
B.99
C.144
D.297
3.等比数列?an?中, a2?9,a5?243,则?an?的前4项和为
A.81 B.120 C.168 D.192 4.2?1与2?1,两数的等比中项是
A.1 B.?1 C.?1 D.5.已知一等比数列的前三项依次为x,2x?2,3x?3,那么?131 21是此数列的第( )项 2A.2 B.4 C.6 D.8
6.在公比为整数的等比数列?an?中,如果a1?a4?18,a2?a3?12,那么该数列的前8项之和为
A.513 B.512 C.510 D.二、填空题
1.等差数列?an?中, a2?9,a5?33,则?an?的公差为___________. 2.数列{an}是等差数列,a4?7,则s7?___________. 3.两个等差数列?an??,bn?,225 8a1?a2?...?an7n?2a?,则5=___________.
b1?b2?...?bnn?3b54.在等比数列?an?中, 若a3?3,a9?75,则a10=___________.
5.在等比数列?an?中, 若a1,a10是方程3x?2x?6?0的两根,则a4?a7=___________.
26.计算log333...3?___________.
???????n三、解答题
1. 成等差数列的四个数的和为26,第二数与第三数之积为40,求这四个数。 2. 在等差数列?an?中, a5?0.3,a12?3.1,求a18?a19?a20?a21?a22的值。 3. 求和:(a?1)?(a?2)?...?(a?n),(a?0)
4. 设等比数列?an?前n项和为Sn,若S3?S6?2S9,求数列的公比q
2n参考答案
一、选择题 1. C ;an?an?1?an?2
2. B ;a1?a4?a7?39,a3?a6?a9?27,3a4?39,3a6?27,a4?13,a6?9,S9?99(a1?a9)?(a4?a6)? 229(13?9)?99 2a5a23(1?34)33. B ;?27?q,q?3,a1??3,S4??120
a2q1?34. C ;x2?(2?1)(2?1)?1,x??1
5. B ;x(3x?3)?(2x?2)2,x??1或x??4,而x??1?x??4,q?3x?3313?,?13??4?()n?1,
2x?2222n?4
2(1?28)1?q331? 6. C ;a1(1?q)?18,a1(q?q)?12,?,q?或q?2,而q?Z,q?2,a1?2,S8?21?2q?q223229?2?510
二、填空题
a5?a233?97??d?8 2. 49 S7?(a1?a7)?7a4?4 9 5?25?22965a52a5a1?a92(a1?a9)S97?9?2653. ; ??????12b52b5b1?b99(b?b)S\99?3121921. 8 ;
4. ?7533 ;q6?25,q??35,a10?a9?q??7535 5. ?2 ;a4a7?a1a10??2
6.1?
12nlog33...3?log(3?3???3)?log3(3 ;33???????2n
n12141111??...?n24211[1?()n]1112 )??2?...?n?212221?2?1?1 n222三、解答题
1. 解:设四数为a?3d,a?d,a?d,a?3d,则4a?26,a?d?40,即a?当d?
1333,d?或?, 22233时,四数为2,5,8,11,当d??时,四数为11,8,5,2 222. 解:a18?a19?a20?a21?a22?5a20,a12?a5?7d?2.8,d?0.4,a20?a12?8d?3.1?3.2?6.3
∴a18?a19?a20?a21?a22?5a20?6.3?5?31.5
3. 解:原式=(a?a2?...?an)?(1?2?...?n)?(a?a?...?a)?2nn(n?1) 2?a(1?an)n(n?1)?(a?1)??1?a2 ??2?n?n(a?1)??224. 解:显然q?1,若q?1则S3?S6?9a1,而2S9?18a1,与S3?S6?2S9矛盾
a1(1?q3)a1(1?q6)2a1(1?q9)由S3?S6?2S9?,2q9?q6?q3?0,2(q3)2?q3?1?0, ??1?q1?q1?q3143得q??,或q?1,而q?1,∴q??
223
(数学必修5)第二章 数列 [综合训练B组]
一、选择题
1.已知等差数列?an?的公差为2,若a1,a3,a4成等比数列, 则a2?
A.?4 B.?6 C.?8 D.?10 2.设Sn是等差数列?an?的前n项和,若
a55S?,则9? a39S51 2A.1 B.?1 C.2 D.3.若lg2,lg(2x?1),lg(2x?3)成等差数列,则x的值等于
A.1 B.0或32 C.32 D.log25 4.已知三角形的三边构成等比数列,它们的公比为q,则q的取值范围是
A.(0,1?51?51?5?1?51?5) B.(,1] C.[1,) D.(,) 222221为第三项, 9为第六35.在?ABC中,tanA是以?4为第三项, 4为第七项的等差数列的公差,tanB是以
项的等比数列的公比,则这个三角形是
A.钝角三角形 B.锐角三角形 C.等腰直角三角形 D.以上都不对
6.在等差数列?an?中,设S1?a1?a2?...?an,S2?an?1?an?2?...?a2n, S3?a2n?1?a2n?2?...?a3n,则S1,S2,S3,关系为
A.等差数列 B.等比数列 C.等差数列或等比数列 D.都不对 7.等比数列?an?的各项均为正数,且a5a6?a4a7?18,则log3a1?log3a2?...?log3a10?
A.12 B.10 C.1?log35 D.2?log35 二、填空题
1.等差数列?an?中, a2?5,a6?33,则a3?a5?______________. 2.数列7,77,777,7777…的一个通项公式是______________.
3.在正项等比数列?an?中,a1a5?2a3a5?a3a7?25,则a3?a5?______________. 4.等差数列中,若Sm?Sn(m?n),则Sm?n=______________.
5.已知数列?an?是等差数列,若a4?a7?a10?17,a4?a5?a6???a12?a13?a14?77且ak?13,则k?______________.
2n6.等比数列?an?前n项的和为2?1,则数列an前n项的和为______________.
??三、解答题
1.三个数成等差数列,其比为3:4:5,如果最小数加上1,则三数成等比数列,那么原三数为什么? 2.求和:1?2x?3x?...?nx2n?1
3.已知数列?an?的通项公式an??2n?11,如果bn?an(n?N),求数列?bn?的前n项和。 4.在等比数列?an?中,a1a3?36,a2?a4?60,Sn?400,求n的范围。
参考答案
一、选择题
1. B ;a1a4?a32,(a2?2)(a2?4)?(a2?2)2,2a2??12,a2??6 2. A ;
S99a595????1 S55a359xxxx23. D ;lg2?lg(2?3)?2lg(2?1),2(2?3)?(2?1),(2)?4?2?5?0,2?5,x?log25
x2xx?1?51?5?q???a?aq?aq?q?q?1?022????2224. D ;设三边为a,aq,aq,则?a?aq?aq,即?q?q?1?0,得?q?R
?aq?aq2?a?q2?q?1?0????q??1?5,或q??1?5?22?22即
?1?51?5 ?q?221,b6?9,q?3,tanB?3,tanC??tan(A?B)?1,35. B ;a3??4,a7?4,d?2,tanA?2,b3?A,B,C都是锐角
6. A ;S1?Sn,S2?S2n?Sn,S3?S3n?S2n,Sn,S2n?Sn,S3n?S2n,成等差数列 7. B ;log3a1?log3a2?...?log3a10?log3(a1a2...a10)?log3(a4a5)5?log3(310)?10 二、填空题
1. 38 ;a3?a5?a2?a6?38 2. an?77(10n?1) ;9,99,999,9999...101?1,102?1,103?1,104?1,7??9 993.5 ;(a3)2?2a3a5?(a5)2?(a3?a5)2?25,a3?a5?5 4.0 ;Sn?an2?bn该二次函数经过(m?n,0),即Sm?n?0 5.18 ;3a7?17,a7?1722,11a9?77,a9?7,d?,ak?a9?(k?9)d,13?7?(k?9)?,k?18 7334n?11?4nnn?1n?12n?126. ;Sn?2?1,Sn?1?2?1,an?2,an?4,a1?1,q?4,Sn?
1?43三、解答题
1. 解:设原三数为3t,4t,5t,(t?0),不妨设t?0,则(3t?1)5t?16t2,t?5,3t?15,4t?20,5t?25,∴原三数为15,20,25。
2. 解:记Sn?1?2x?3x2?...?nxn?1,当x?1时,Sn?1?2?3?...?n?1n(n?1),当x?1时,2n?1xSn?x?2x?3x?...?(n?1)x?1?xn?nxn(x?1)??1?x∴原式=?
?n(n?1)(x?1)??223n?1?nx,(1?x)Sn?1?x?x?x?...?xn231?xn?nxn ?nx,Sn?1?xn?11?2n,n?5n23. 解:bn?an??,当n?5时,Sn?(9?11?2n)?10n?n,当n?6时,
2?2n?11,n?6Sn?S5?Sn?52?n?5??n?10n,(n?5)2?25?(1?2n?11)?n?10n?50,∴Sn??2
2??n?10n?50,(n?6)
4. 解:a1a3?a22?36,a2(1?q2)?60,a2?0,a2?6,1?q2?10,q??3,当q?3时,
2(1?3n)?2[1?(?3)n]na1?2,Sn??400,3?401,n?6,n?N;当q??3时,a1??2,Sn??400,
1?31?(?3)(?3)n?801,n?8,n为偶数;∴n?8,且n为偶数
(数学必修5)第二章 数列 [提高训练C组]
一、选择题
1.数列?an?的通项公式an?1n?n?1,则该数列的前( )项之和等于9。
C.96 D.97
A.98 B.99
2.在等差数列?an?中,若S4?1,S8?4,则a17?a18?a19?a20的值为
A.9 B.12
C.16 D.17
3.在等比数列?an?中,若a2?6,且a5?2a4?a3?12?0,则an为
A.6 B.6?(?1)n?2 C.6?2n?2 D.6或6?(?1)n?2或6?2n?2
4.在等差数列?an?中,a1?a2?...?a50?200,a51?a52?...?a100?2700,则a1为
A.?22.5
B.?21.5 C.?20.5 D.?20
25.已知等差数列{an}的前n项和为Sn,若m?1,且am?1?am?1?am?0,S2m?1?38,则m等于
A.38 B.20 C.10 D.9
6.等差数列{an},{bn}的前n项和分别为Sn,Tn,若
Sna2n,则n= ?Tn3n?1bnA.
22n?12n?12n?1 B. C. D. 33n?13n?13n?4二、填空题
1.已知数列?an?中,a1??1,an?1?an?an?1?an,则数列通项an?___________. 2.已知数列的Sn?n?n?1,则a8?a9?a10?a11?a12=___________.
3.三个不同的实数a,b,c成等差数列,且a,c,b成等比数列,则a:b:c?___________. 4.在等差数列?an?中,公差d?21,前100项的和S100?45,则a1?a3?a5?...?a99=___________. 25.若等差数列?an?中,a3?a7?a10?8,a11?a4?4,则S13?__________.
6.一个等比数列各项均为正数,且它的任何一项都等于它的后面两项的和,则公比q为___________.
三、解答题
1. 已知数列?an?的前n项和Sn?3?2n,求an
2. 一个有穷等比数列的首项为1,项数为偶数,如果其奇数项的和为85,偶数项的和为170,求此数列的公比和项数。
3. 数列lg1000,lg(1000?cos600),lg(1000?cos2600),...lg(1000?cosn?1600),…的前多少项和为最大? 4. 已知数列?an?的前n项和Sn?1?5?9?13?...?(?1)n?1(4n?3),求S15?S22?S31的值。
参考答案
一、选择题 1. B ;an?1n?n?1?n?1?n,Sn?2?1?3?2?...?n?1?n,Sn?n?1?1?9,
n?1?10,n?99
2. A ;S4?1,S8?S4?3,而S4,S8?S4,S12?S8,S16?S12,S20?S16,成等差数列,即1,3,5,7,9,
a17?a18?a19?a20?S20?S16?9
3. D ;a5?2a4?a3?2a2?0,a5?a3?2a4?2a2,a3(q2?1)?2a2(q2?1),a3?2a2或q2?1?0,
q?2,1或?1,当q?1时,an?6;当q??1时,a1??6,an??6?(?1)n?1?6?(?1)n?2;当q?2时,
a1?3,an?3?2n?1?6?2n?2;
4. C ;2700?200?50d?50,d?1,S50?50(a1?a50)?200,a1?a50?8,2a1?49d?8,2a1??41, 2a1??20.5
5. C ;am?am?am2?0,am(am?2)?0,am?2,S2m?1?2m?1(a1?a2m?1)?(2m?1)a2m?38, 22m?1?19
2n?1(a1?a2n?1)San2an2(2n?1)2n?16. B ; ??2?2n?1??2n?1bn2bn(b1?b2n?1)T2n?13(2n?1)?13n?12二、填空题 1. ??1?1111111 ;??1,???1,?1,??是以为首项,以?1为公差的等差数列,na1anan?1an?1ana1?an?11??1?(n?1)?(?1)??n,an?? ann2. 100 ;a8?a9?a10?a11?a12?S12?S7?122?12?1?(72?7?1)?100
3. 4:1:(?2);a?c?2b,c?2b?a,ab?c2?(2b?a)2,a2?5ab?4b2?0,a?b,a?4b,c??2b
100(a1?a100)?45,a1?a100?0.9,a1?a99?a1?a100?d?0.4, 25050S\?(a1?a99)??0.4?10
2213(a1?a13)?13a7 5. 156 ;a3?a7?a10?a11?a4?12,a3?a11?a10?a4,a7?12,S13?24. 10 ;S100?6.
5?1?1?522 ; 设an?an?1?an?2?qan?qan,q?q?1?0,q?0,q? 22三、解答题
?5,(n?1)1. 解:Sn?3?2,Sn?1?3?2,an?Sn?Sn?1?2(n?2),而a1?S1?5,∴an??n?1
2,(n?2)?nn?1n?1a2(1?q2n)1?(q2)n2. 解:设此数列的公比为q,(q?1),项数为2n,则S奇??85,S偶??170, 221?q1?qa21?22n??q?2,?85,22n?256,2n?8,∴q?2,项数为8 S奇a11?43. 解:an?3?(n?1)lg2,?an?是以3为首项,以?lg2为公差的等差数列,Sn?S偶n[3?3?(n?1)lg2]? 2?lg226?lg26?lg2n?n,对称轴n??10.47,n?N*,10,11比较起来10更靠近对称轴,∴前10项和222lg2为最大。
另解:由??an?0,得9.9?n?10.9
?an?1?0?n?(?4),n为偶数???2n,n为偶数?2,Sn??,4. 解:Sn??S15?29,S22??44,S31?61,
n?12n?1,n为奇数???(?4)?4n?3,n为奇数??2S15?S22?S31??76
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库新课标教材高中数学测试题组(必修5)第二章 数列(基础训练题共3在线全文阅读。
相关推荐: