小学奥数知识框架与重点内容大全(2)

来源:网络收集 时间:2025-07-08 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。 3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。 4. 能被3、9整除:各个数位上数字的和能被3、9整除。 5. 能被7整除:

①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。 ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。 6. 能被11整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。 ②奇数位上的数字和与偶数位数的数字和的差能被11整除。 ③逐次去掉最后一位数字并减去末位数字后能被11整除。 7. 能被13整除:

①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。 ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。 三、整除的性质:

1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。 2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。 3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。 4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

余数及其应用

基本概念:对任意自然数a、b、q、r,如果使得a÷b=q??r,且0

②若a、b除以c的余数相同,则c|a-b或c|b-a。

③a与b的和除以c的余数等于a除以c的余数加上b除以c的余数的和除以c的余数。 ④a与b的积除以c的余数等于a除以c的余数与b除以c的余数的积除以c的余数。

余数、同余与周期 一、同余的定义:

①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。

②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。 二、同余的性质:

①自身性:a≡a(mod m);

②对称性:若a≡b(mod m),则b≡a(mod m);

③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);

④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m); ⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);

nn

⑥乘方性:若a≡b(mod m),则a≡b(mod m);

⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c); 三、关于乘方的预备知识:

Aa×bab

①若A=a×b,则M=M=(M)

②若B=c+d则M=M=M×M

四、被3、9、11除后的余数特征:

①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);

②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);

p-1

五、费尔马小定理:如果p是质数(素数),a是自然数,且a不能被p整除,则a≡1(mod p)。

分数与百分数的应用 基本概念与性质:

分数:把单位“1”平均分成几份,表示这样的一份或几份的数。 分数的性质:分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。 分数单位:把单位“1”平均分成几份,表示这样一份的数。 百分数:表示一个数是另一个数百分之几的数。 常用方法:

①逆向思维方法:从题目提供条件的反方向(或结果)进行思考。 ②对应思维方法:找出题目中具体的量与它所占的率的直接对应关系。 ③转化思维方法:把一类应用题转化成另一类应用题进行解答。最常见的是转换成比例和转换成倍数关系;把不同的标准(在分数中一般指的是一倍量)下的分率转化成同一条件下的分率。常见的处理方法是确定不同的标准为一倍量。 ④假设思维方法:为了解题的方便,可以把题目中不相等的量假设成相等或者假设某种情况成立,计算出相应的结果,然后再进行调整,求出最后结果。

⑤量不变思维方法:在变化的各个量当中,总有一个量是不变的,不论其他量如何变化,而这个量是始终固定不变的。有以下三种情况:A、分量发生变化,总量不变。B、总量发生变化,但其中有的分量不变。C、总量和分量都发生变化,但分量之间的差量不变化。 ⑥替换思维方法:用一种量代替另一种量,从而使数量关系单一化、量率关系明朗化。 ⑦同倍率法:总量和分量之间按照同分率变化的规律进行处理。 ⑧浓度配比法:一般应用于总量和分量都发生变化的状况。

分数大小的比较 基本方法:

①通分分子法:使所有分数的分子相同,根据同分子分数大小和分母的关系比较。 ②通分分母法:使所有分数的分母相同,根据同分母分数大小和分子的关系比较。 ③基准数法:确定一个标准,使所有的分数都和它进行比较。

④分子和分母大小比较法:当分子和分母的差一定时,分子或分母越大的分数值越大。 ⑤倍率比较法:当比较两个分子或分母同时变化时分数的大小,除了运用以上方法外,可以用同倍率的变化关系比较分数的大小。(具体运用见同倍率变化规律) ⑥转化比较方法:把所有分数转化成小数(求出分数的值)后进行比较。 ⑦倍数比较法:用一个数除以另一个数,结果得数和1进行比较。 ⑧大小比较法:用一个分数减去另一个分数,得出的数和0比较。 ⑨倒数比较法:利用倒数比较大小,然后确定原数的大小。 ⑩基准数比较法:确定一个基准数,每一个数与基准数比较。

Bc+dcd

分数拆分

一、 将一个分数单位分解成两个分数之和的公式:

完全平方数

完全平方数特征:

1. 末位数字只能是:0、1、4、5、6、9;反之不成立。 2. 除以3余0或余1;反之不成立。 3. 除以4余0或余1;反之不成立。 4. 约数个数为奇数;反之成立。

5. 奇数的平方的十位数字为偶数;反之不成立。

6. 奇数平方个位数字是奇数;偶数平方个位数字是偶数。 7. 两个相临整数的平方之间不可能再有平方数。

22

平方差公式:X-Y=(X-Y)(X+Y)

222

完全平方和公式:(X+Y)=X+2XY+Y

222

完全平方差公式:(X-Y)=X-2XY+Y

比和比例

比:两个数相除又叫两个数的比。比号前面的数叫比的前项,比号后面的数叫比的后项。 比值:比的前项除以后项的商,叫做比值。

比的性质:比的前项和后项同时乘以或除以相同的数(零除外),比值不变。 比例:表示两个比相等的式子叫做比例。a:b=c:d或 比例的性质:两个外项积等于两个内项积(交叉相乘),ad=bc。

正比例:若A扩大或缩小几倍,B也扩大或缩小几倍(AB的商不变时),则A与B成正比。 反比例:若A扩大或缩小几倍,B也缩小或扩大几倍(AB的积不变时),则A与B成反比。 比例尺:图上距离与实际距离的比叫做比例尺。

按比例分配:把几个数按一定比例分成几份,叫按比例分配。

综合行程 基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系. 基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间 关键问题:确定运动过程中的位置和方向。

相遇问题:速度和×相遇时间=相遇路程(请写出其他公式) 追及问题:追及时间=路程差÷速度差(写出其他公式) 流水问题:顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间 顺水速度=船速+水速 逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水 速=(顺水速度-逆水速度)÷2

流水问题:关键是确定物体所运动的速度,参照以上公式。 过桥问题:关键是确定物体所运动的路程,参照以上公式。 主要方法:画线段图法

基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、

速度差)中任意两个量,求第三个量。

工程问题 基本公式:

①工作总量=工作效率×工作时间 ②工作效率=工作总量÷工作时间 ③工作时间=工作总量÷工作效率 基本思路:

①假设工作总量为“1”(和总工作量无关); ②假设一个方便的数为工作总量(一般是它们完成工作总量所用时间的最小公倍数),利用上述三个基本关系,可以简单地表示出工作效率及工作时间.

关键问题:确定工作量、工作时间、工作效率间的两两对应关系。 经验简评:合久必分,分久必合。

逻辑推理

基本方法简介:

①条件分析—假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的。例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析—列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。 ③条件分析——图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示“是,有”等肯定的状态,没有连线则表示否定的状态。例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

几何面积 基本思路:

在一些面积的计算上,不能直接运用公式的情况下,一般需要对图形进行割补,平移、旋转、翻折、分解、变形、重叠等,使不规则的图形变为规则的图形进行计算;另外需要掌握和记忆一些常规的面积规律。 常用方法:

1. 连辅助线方法

2. 利用等底等高的两个三角形面积相等。

3. 大胆假设(有些点的设置题目中说的是任意点,解题时可把任意点设置在特殊位

置上)。

4. 利用特殊规律 ①等腰直角三角形,已知任意一条边都可求出面积。(斜边的平方除以4等于等腰直角三角形的面积)

②梯形对角线连线后,两腰部分面积相等。 ③圆的面积占外接正方形面积的78.5%。

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库小学奥数知识框架与重点内容大全(2)在线全文阅读。

小学奥数知识框架与重点内容大全(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/548475.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219