雅心行 创未来
浙江省杭州市萧山九中
2010—2011学年度高三第一次质量检测
数学试题(理科)
一、选择题:本大题共12小题,每小题5分,共60分。 1.若集合M?{y|y?2?x},P?{y|y?
A.{y|y?1}
B.{y|y?1}
x?1},则M?P?
C.{y|y?0}
D.{y|y?0}
( )
2.函数y?log1(3x?2)的定义域是
2( )
A.[1,??)
B.(2 3,??)C.[2 D.(2 3,1]3,1]
( )
3.不等式x?
2?2的解集是 x?1A.(?1,0)?(1,??) C.(?1,0)?(0,1)
2B.(??,?1)?(0,1) D.(??,?1)?(1,??)
4.一元二次方程ax?2x?1?0,(a?0)有一个正根和一个负根的充分必要条件是( ) A.a?0 B.a?0 C.a??1 D.a?1 5.已知a、b、c满足c?b?a,且ac?0,那么下列选项中一定成立的是
A.ab?ac C.cb?ab
x22( )
B.c(b?a)?0 D.ac(a?c)?0
x6.函数y??e的图象
A.与y?e的图象关于y轴对称 C.与y?e?xx ( )
B.与y?e的图象关于坐标原点对称 D.与y?e?x的图象关于y轴对称
的图象关于坐标原点对称
1 www.yachedu.com 雅创教育网·虎
雅心行 创未来
7.函数y?xcosx?sinx在下面哪个区间内是增函数
A.(
?3?2,2) B.(?,2?) C.(3?5?,) 22D.(2?,3?)
( )
8.设z=x?y, 式中变量x和y满足条件
?x?3??x?y?3?0?x?2y?0?, 则z的最小值为
A.1 B.?1 C.3 D.?3
9.某地2010年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下:
行业名称 计算机 机械 营销 物流 贸易
65280 应聘人数 215830 200250 154676 74570
行业名称 计算机 营销 机械 建筑 化工
76516 70436 招聘人数 124620 102935 89115 若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中
数据,就业形势一定是 ( ) A.计算机行业好于化工行业. B.建筑行业好于物流行业. C. 机械行业最紧张. D.营销行业比贸易行业紧张. 10.设函数f(x)??x(x?R),区间M=[a,b](a
11.设集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},则A∪B= . 12.已知f(x)?lgx,则f(2)?
5 .
13.设奇函数f(x)的定义域为[-5,5].若当x∈[0,5]时, f(x)的图象如右图,则不等式f(x)<0的 解是 .
114.函数f(x)?的最大值是 . 1?x(1?x)2??(x?1),x?115.设函数f(x)?? ,则使得f(x)?1的自变量x的取值范围
??4?x?1,x?1为 .
16.若函数(fx)=ax?b?2在[0,+∞)上为增函数,则实数a、b的取值范围是 .
2 www.yachedu.com 雅创教育网·虎
雅心行 创未来
17.若存在常数
p?0,使得函数
pf(x)满足f(px)?f(px?)(x?R),则f(x)的最小正周期为 .
2三、解答题:本大题共4小题,共65分.解答应写出文字说明,证明过程或演算步骤. 18.(本小题满分15分)
设 P:函数y?cx在R上单调递减.
Q:函数y?lg(x2?cx?2)的定义域为R,如果P且Q为假命题、P或Q为真命题,求c的取值范围. 19.(本小题满分17分)
已知函数f(x)?ln(x?1)?12x 4 (1)讨论函数f(x)的单调区间;
(2)求函数f(x)在[0,2]上的最大值和最小值。
3 www.yachedu.com 雅创教育网·虎
雅心行 创未来
20.(本题满分15分) 某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形,
上部是等腰直角三角形。 要求框架围成的总面积8cm2, 问x为多少时用料最省? 21.(本小题满分18分)
设函数f(x)?x(x?1)(x?a),(a?1)
(1)求导数f/(x); 并证明f(x)有两个不同的极值点x1,x2; (2) 若不等式f(x1)?f(x2)?0成立,求a的取值范围。
4 www.yachedu.com 雅创教育网·虎
雅心行 创未来
参考答案
一、选择题:本大题共10小题,每小题5分,共50分 1—5CDAAA 6—10DBABA
二、填空题:本大题有7小题,每题5分, 共35分。 11.{1,2,5} 12.
1lg2 513.(?2,0)?(2,5] 14.
4 315.{x|x??2或0?x?10} 16.a?0,b?0 17.
p 2三、解答题:本大题有4小题,共42分。 18.(本小题满分15分) 解:P:0 Q:??0,即?22?c?22…………………………………………3分 当P真Q假时,c??……………………………………4分 当P假Q真时,c?(?22,0]?[1,22)…………………………5分 19.(本小题满分17分) 解:(1)f(x)?'?(x?1)(x?2) ………………………………………3分 2(x?1) 所以,x?(?1,1)时递增,(1,??)递减。………………………4分 5 www.yachedu.com 雅创教育网·虎 百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库2024级高三10月月考数学试卷在线全文阅读。
相关推荐: