无缝线路理论知识(3)

来源:网络收集 时间:2025-07-05 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

则得

4.扣件形变能A4

扣件阻矩M可表示为角位移β的冥函数,即(见公式5-15)。轨道弯曲变形时,钢轨相对轨枕转动,从而产生扣件形变能A4

当β= y',从而有

设 (5-24)

则 (5-25)

5.稳定性计算公式 综上所述,可知梁(轨道)的A

由于已经假设了线形,且由以上推导过程可知:在梁的变形过程中,l起着积分参变量的作用,真正的变量只有一个f值。因此,对总势能A取驻值,相当于求 ,则:

设初始弯曲失长比为 ,弹性初弯矢度f0e占总初弯矢度f0的比例为 ,于是得 。代入上式得: (5-26)

设 (5-27) (5-28) (5-29) (5-30)

则 (5-31)

上式即为按能量法推导出来无缝线路保持平衡稳定状态时的温度压力,实践证明,无缝线路内纵向力的分布并非绝对均匀,因此稳定性计算,除考虑均匀分布的温度力外,还应考虑非均匀分布的纵向力。但由于无缝线路臌曲位置与纵向力的分布具有一定的随机性,且规律复杂,故在计算公式中暂用均匀分布纵向力ΔP代替。

(5-32)

式中 F0 ——纵向力峰值,计算中取等于10℃时的温度力; a0 ——纵向力峰系数;

11

b ——纵向力分布系数。 换算求得的ΔP相当于8℃的温度力。考虑ΔP的影响,式(5-31)变为如下形式: (5-33)

按式(5-33)计算无缝线路稳定性时,一般先给定f值,然后输入不同的li进行计算,以求出对应一定f值的温度力极小值Pmin和相应的l值。给定不同的f值,可绘制P~f平衡状态曲线,从而求得临界矢度fK、临界波长lK、临界温度PK和相应的临界温度差ΔtK。 (三)积分函数η、θ、G、K、ψ的计算方法 1. 初始弯曲积分函数η

利用-2sinxsiny=cos(x+y)-cos(x-y)的关系式后,式(5-17)的积分可写为: (5-34) 2. 弹性初始弯曲积分函数θ

利用2sinxsiny=cos(x+y)+cos(x-y)的关系后,式(5-19)的积分可写为: (5-35)

3. 道床阻力减值、增值积分函数G、K 计算G、K时 ,令 ,则 。

当x→0~l时,对应的θ→0~π。代入式(5-21)、(5-22)后,可得:

利用正弦函数的对称性,上式可写成: (5-36)

(5-37)

已知Z和N,可用β和γ函数(查数学手册),求得K、G值。 4. 扣件阻矩积分函数ψ 式(5-24)可改写为:

令 ,则 。

当x=l/4时,对应的θ=π/2。代入上式后,可得: (5-38) 当已知μ时,可运用β和γ函数求得ψ值。 第三节 超长无缝线路 稳定性安全储备分析

如前所述,轨道结构的工作特点是荷载的重复性与随机性,加上自然条件的影响,使得轨道存在各种不平顺,不得不对线路进行经常或定期的修理,线路状态的变化会降低无缝线路的稳定性。因此在上述稳定性计算的基础上,还需要对稳定性的安全储备量进行分析,即要考虑一定的安全储备量。下面根据理论计算及现场实际情况来分析确定安全系数的有关问题。 (一)初始弯曲的影响

实践分析表明,在相同线路结构和同等状态下,轨道变形量一定时,对于不同的初弯波长,相应的临

12

界温度力和轨温差是不同的,即存在有最不利的初弯波长,相对应的轨温差为最小值。铁道科学研究院曾在一些线路上,对50、60kg/m钢轨的初始弯曲进行了测量。对不同的初始波长、矢度、矢长比以及弹性弯矢度占总初弯矢度的比例d值进行了统计分析。实测资料表明,在长波长(l0=7m),矢度较大的初始弯曲时,60、50kg/m钢轨矢长比i0分别为0.97‰和1‰,弹性初弯矢度占总矢度的比值d=53.88%。

计算时,考虑一定的安全性,对于初弯有关参数的选用为:60、50kg/m钢轨分别取i0=1‰与1.13‰,d=58.33%。据此计算了不同初始波长情况下的临界温差,从而的到最不利初始弯曲波长l0,对于60kg/m、50kg/m钢轨无缝线路的最不利初始弯曲波长l0分别为720cm和700cm。 (二)允许温差的确定

在无缝线路上由于存在一些不确定的因素,因此不能将稳定计算得到的临界温差作为允许温差使用,应当考虑一定的安全储备量。现采用安全系数K0来作为安全储备量的评价,安全系数K0包括基本安全系数KA和附加安全系数Kc,它们的关系是K0= KA?Kc。 基本安全系数的确定,主要考虑了下列因素的影响:

如初始弯曲分布的随机性,道床密实度、扣件拧紧度的不均性;轨温测量的不精确;计算结果的误差;高温下无缝线路可能产生横向累积变形等。允许温差的设计,把限制轨道累积变形作为基本条件,有利于提高无缝线路的稳定性。据测得的日温差频数及轨温昼夜变化无缝线路的横向变形,经计算,取

f=0.02~0.05cm所对应的轨温差Δt作为无缝线路稳定性允许温差[Δtc],f取值与轨道结构类型及道床密实度有关。通常取f=0.02cm,这样,只要初始弯曲不超过设计允许值,锁定轨温至最高轨温的温度差也不超过允许值,在高温季节,一昼夜时间内,无缝线路的最大弯曲变形量不超过0.02cm,经过一个季节运营后,累积变形量就不会超过0.2m。对于不同轨型、混凝土枕、在列车荷载作用下,用两转向之间的轨排受负玩具作用而浮起的实测阻力,以及相应的不利初弯波长,计算得到临界温差Δtk及允许温差[Δtc],从而可得到不同轨型及不同平面条件下的基本安全系数KA。

附加安全系数Kc主要考虑了:无缝线路纵向力分布不均匀和运营过程中锁定轨温的变化。附加安全系数Kc主要考虑了:无缝线路纵向力分布不均匀和运营过程中锁定轨温的变化。

稳定性计算时,不论直线或曲线均考虑在轨道弯曲变形范围内,纵向力分布不均匀的峰值相当10℃温度力,把其换算为均匀分布纵向力ΔP,用(5-32)式计算,求得ΔP相当8℃温度力,在稳定性计算式(5—33)中予以考虑。

在确定稳定性允许温差时,还考虑无缝线路经过长期运营后,锁定轨温的变化,根据试验及统计分析,锁定轨温变化在8℃以内,由设计予以修正。对锁定轨温变化的修正,直线与曲线区段采取不同处理办法: 在直线及半径R≥2 000m曲线区段上,为保证有充裕的养护维修作业时间,考虑高温季节也棵安排必要的养护维修作业,因此在允许铺轨温差中,修正锁定轨温8℃。

在半径R<2 000m的曲线段上,锁定轨温差异在作业安排的轨温差中加以修正,而允许铺轨温差不作修正,修正值仍为8℃。因此在曲线上允许安排作业的轨温差比允许铺轨的轨温差低8℃,也就是说,在曲线区段上,高温季节,当轨温超过铺轨允许温差减8℃,全天不得安排养护维修作业。 考虑上述因素,可得到不同轨型及不同线路平面条件下的附加安全系数。

KA与Kc乘积,则为稳定性实际安全系数K0,其值表征无缝线路实际安全储备量。由计算求得三种轨型、混凝土枕(每公里不同配置根数),直线及半径R>800m曲线道床、肩宽40cm;R≤800m曲线、道床肩宽45cm且碴肩堆高16cm,不同线路平面,稳定性临界温差Δtk、允许温差[Δtc]、安全系数K0。现以每公里轨枕配置根数1 840根为例,其计算结果如表5-7所列。

第四节 普通无缝线路设计

确定中和轨温

普通无缝线路设计,主要指区间内的无缝线路设计,其主要内容为确定中和温度和结构计算。我国无缝线路的基本结构型式为温度应力式。 一、确定中和轨温

13

为与施工时的锁定轨温相区别,这里将设计锁定轨温称为中和温度。 (一)根据强度条件确定允许的降温幅度

无缝线路钢轨应有足够的强度,以保证在动弯应力、温度应力及其他附加应力共同作用下不被破坏,仍能正常工作。此时,要求钢轨所承受的各种应力的总和不超过规定的容许值[ζs],即 (5-39) 式中 ζd——钢轨承受的最大动弯应力(Mpa); ζt——温度应力;

ζc——钢轨承受的制动应力,一般按10 Mpa计算;

[ζs]——钢轨容许应力,它等于钢轨的屈服强度ζs除以安全系数K,[ζs]=ζs/K。 极限强度ζb = 785 Mpa级钢轨,ζs= 405 MPa; 极限强度ζb = 883 Mpa级钢轨,ζs= 457 MPa; 一般钢轨K=1.3,再用轨K=1.35。

允许的降温幅度[Δts]由下式计算

(5-40)

式中 ζgd——钢轨底部下缘动弯应力。

(二)根据稳定条件确定允许的升温幅度

图5—14 中和温度计算图

根据稳定条件求得允许温度压力[P]后,按下计算允许轨升幅度[Δtc]: (5-41) (三)中和温度的确定 中和温度te按图5-14计算:

(5-42)

式中 tmax、tmin ——铺轨地区的最高、最低轨温;

ΔtK——温度修正值,可根据当地具体情况取0~5℃。

无缝线路铺设时,锁定轨温应有一个范围,一般取中和温度±5℃,则: 锁定轨温上限tm=te+5℃;锁定轨温下限tn=te-5℃; 且需满足以下条件:tmax-tn<[Δtc]; tm-tmin<[Δts]。 无缝线路结构计算

(一)轨条长度

轨条长度应考虑线路平、纵面条件、道岔、道口、桥梁、隧道所在位置,原则上按闭塞区间长度设计,一般长度为1 000~2 000 m。轨节长度最短一般为200 m,特殊情况下不短于150 m。在长轨之间、道岔与长轨之间、绝缘接头处,需设置缓冲区,缓冲区一般设置2~4根同类型型标准轨。

对于缓冲区、伸缩区、以及其间接头的布置,均有一系列规定,设计时执行《无缝线路铺设及养护维修方法》中的有关规定。

(二)伸缩区长度

伸缩区长度ls按式(5-9)计算。伸缩区长度一般取50~100 m,宜取为标准轨长度的整倍数。

14

(三)预留轨缝

长轨条一端的伸缩量λ长按式(5-12)计算,标准轨一端的伸缩量λ短按式(5-13)计算。 确定预留轨缝的原则与第二章中普通线路轨缝的确定原则相同。缓冲区中标准轨之间的预留轨缝与普通线路相同。长轨与标准轨之间的预留轨缝计算方法如下:

按冬季轨缝不超过构造轨缝ag的条件,可算得预留轨缝a0上限为: (5-43)

按夏季轨缝不顶严的条件,其下限为: (5-44)

式中 λ长、λ短——从锁定轨温至当地最低轨温时,长轨、短轨一端的伸缩量; λ'长+λ'短——从锁定轨温至当地最高轨温时,长轨、短轨一端的伸长量。 则预留轨缝a0为: (5-45)

若钢轨绝缘接头采用胶接绝缘接头,则允许缓冲区轨缝挤严。 (四)防爬设备的设置

线路爬行是造成轨道病害的主要原因之一。无缝线路地段,如爬行,其后果较普通线路更为严重。因为它除产生一般的轨道病害外,还会因钢轨受力不均而改变原来的锁定轨温

在无缝线路的伸缩区和缓冲区上,因钢轨可能有伸缩,必须布置足够的防爬设备,保证无相对于轨枕的纵向移动。为此,要求钢轨与轨枕间的扣件阻力,大于轨枕与道床间的纵向阻力。即

式中 P防——一对防爬器提供的阻力(N),见表5-3; P扣——一根轨枕上扣件的阻力(N),见表5-3; R——一根轨枕提供的道床纵向阻力(N),见表5-4; n——配置一对防爬器的轨枕数。

缓冲区的防爬设备与伸缩区相同。采用弹条Ⅰ、Ⅱ型扣件时,一般可不装防爬器。 第五节 桥上无缝线路 概述

在桥梁上铺设无缝线路,可以减轻列车车论对桥梁的冲击,改善列车和桥梁的运营条件,延长设备使用寿命,减少养护维修工作量。这些优点在行车速度提高时尤为显著。

桥上无缝线路的受力情况和路基上有所不同,除受到列车动载、温度力、制动力等的作用外,还受到由于桥梁的伸缩或挠曲变形位移而产生的额外的纵向附加力作用。因温度变化梁伸缩引起的相互作用力,叫伸缩力。因列车荷载梁的挠曲而引起的相互作用力,叫挠曲力。与此同时,钢轨也对桥跨结构施加大小相等、方向相反的反作用力。此外,桥上无缝线路一旦断裂,不仅危及行车安全,也将对桥跨结构施加断轨力。所有这些,均奖通过桥跨结构而作用于墩台上。因此,设计桥上无缝线路时,为保证安全,必须考虑在上述各项纵向力的组合作用下,保证钢轨、桥跨结构及墩台满足各自的强度条件、稳定条件以及钢轨断缝条件。

我国从1963年开始,先后在一些中小跨度的多种类型桥梁(简支梁、连续梁、有碴无碴桥)上铺设无缝线路,并对桥上无缝线路梁、轨相互作用的原理进行了深入的研究。研究了多种类型桥梁上无缝线路纵向力作用规律,以及桥梁墩顶位移(高墩)等多种因素的影响,并建立了桥上无缝线路伸缩力、挠曲力的计算原理和计算方法,为我国在桥上铺设无缝线路奠定了基础,至今已成功地在桥梁上铺设了无缝线路。除一

15

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库无缝线路理论知识(3)在线全文阅读。

无缝线路理论知识(3).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/652847.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219