毕业设计(论文)
文 献 翻 译
题 目 矿山测量三维模型制作 学 院 测绘科学与技术学院 专 业 测绘工程 班 级 学 生 学 号 指导教师
二〇一二 年 六 月 二 日
Constructing Rules and Scheduling Technology for 3D
Building Models
Zhengwei SUI, Lun WU, Jingnong WENG, Xing LIN, Xiaolu JI
Abstract
3D models have become important form of geographic data beyond conventional 2D geospatial data. Buildings are important marks for human to identify their environments, because they are close with human life, particularly in the urban areas. Geographic information can be expressed in a more intuitive and effective manner with architectural models being modeled and visualized in a virtual 3D environment. Architectural model data features with huge data volume, high complexity, non-uniform rules and so on. Hence, the cost of constructing large-scale scenes is high. Meanwhile, computers are lack of processing capacity upon a large number of model data. Therefore, resolving the conflicts between limited processing capacity of computer and massive data of model is valuable. By investigating the characteristics of buildings and the regular changes of viewpoint in virtual 3D environment, this article introduces several constructing rules and scheduling techniques for 3D constructing of buildings, aiming at the reduction of data volume and complexity of model and thus improving computers’ efficiency at scheduling large amount of architectural models. In order to evaluate the efficiency of proposed constructing rules and scheduling technology listed in the above text, the authors carry out a case study by 3D constructing the campus of Peking University using the proposed method and the traditional method. The two results are then examined and compared from aspects of model data volume, model factuality, speed of model loading, average responding time during visualization, compatibility and reusability in 3D geo-visualization
platforms: China Star, one China’s own platform for 3D global GIS manufactured by the authors of this paper. The result of comparison reveals that models built by the proposed methods are much better than those built using traditional methods. For the constructing of building objects in large-scale scenes, the proposed methods can not only reduce the complexity and amount of model data remarkably, but can also improving computers’ efficiency.
Keywords: Constructing rules, Model scheduling, 3D buildings
I. INTRODUCTION
In recent years, with the development of 3D GIS (Geographical Information System) software like Google Earth, Skyline, NASA World Wind, large-scale 3D building models with regional characteristics have become important form of geographic data beyond conventional 2D geospatial data, like multi-resolution remote sensing images and vector data [1].Compared to traditional 2D representation, geographic information can be expressed in a more intuitive and effective manner with architectural models being modeled and visualized in a virtual 3D environment. 3D representation and visualization provides better visual effect and vivid urban geographic information, and thus plays an important role in people's perceptions of their environment. Meanwhile, the 3D building data is also of great significance for the construction of digital cities.
But how to efficiently visualize thousands of 3D building models in a virtual 3D environment is not a trivial question. The most difficult part of the question is the conflicts between limited processing capacity of computer and massive volume of model data, particularly in the procedure of model rendering. Taking the 3D modeling of a city for the example using traditional 3D modeling method, suppose there are 100 000 buildings to model in the urban area and the average size of model data for each building is roughly 10 M. So the total data volume of building models in the city could reach a TB level. However, the capacity of ordinary computer memory is only in the GB scale. Based on this concern, the authors proposed the scheduling technology for large-scale 3D buildings models in aspects of model loading and rendering. Due to the lack of building constructing rules and standard, models of buildings vary in aspects of constructing methods, textures collection and model data volume, especially in aspects of model reusability and factuality. Such a large amount of data without uniform constructing rules becomes a huge challenge for data storage, processing and visualization in computers. It also brings the problem of incompatibility among different 3D GIS systems.
After years of research in GIS (Geographic Information System), people have
accumulated a number of ways to solve the above problems [3]. However in virtual 3D environment, because of the difference in data organization and manners of human computer interaction (HCI), we need to apply a new standardized method of modeling and scheduling for 3D models. At present, there is no such a uniform method as the constructing specification or standard for the modeling of 3D buildings. Existing approaches are insufficient and inefficient in the scheduling of large-scale building models, resulting in poor performance or large memory occupancy. In response to such questions, the authors proposed a new method for the construction of 3D building models. Models built using the proposed methods could be much better than those built using traditional methods. For the 3D modeling of building objects in scenes of large scale, the proposed methods can not only remarkably reduce the complexity and amount of model data, but can also improving the reusability and factuality of models. Concerning the scheduling of large-scale building models, the Model Loading Judgment Algorithm (MLJA) proposed in this paper could solve the optimal judgment problem of model loading in 3D vision cone, particularly in circumstance with uncertain user interactions.
This paper first examines and analyzes existing problems in constructing and scheduling steps of 3D building models. Then the authors propose a set of constructing rules for 3D building models together with methods of model optimization. Besides, special scheduling technology and optimization method for model rendering is also applied in this paper for large-scale 3D building models. In order to evaluate the efficiency of proposed rules and methods, a case study is undertaken by constructing a 3D model for the main campus of Peking University and Shenzhen using both the proposed method and the traditional method respectively. The two resulting 3D models of Peking University campus and Shenzhen are then examined and compared with one other in aspects of model data volume, model factuality, speed of model loading, average responding time during visualization, compatibility and reusability in various 3D geo-visualization platforms like China Star (one China’s own platform for 3D global GIS manufactured by the authors), Skyline, etc. Result of comparison tells that provided similar factuality of models,
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库三维建模本科毕业论文文献翻译在线全文阅读。
相关推荐: