(2)
p?5. 14c2b220.(1)由题意可得c?5,将x?c代入椭圆方程得y??b1?2??,
aab2414522?即有?OPQ的面积为,即,且a?b?5, PQ?c?00a323解得a?3, b?2,
x2y2??1. 即椭圆方程为94t2(2)设M?t,0?,且?1,即?3?t?3.
9222直线PQ: x?my?t,代入椭圆方程可得4m?9y?8mty?4t?36?0,
??设P?x1,y1?, Q?x2,y2?,
4t2?368mt?0, 则y1?y2??, y1y2?224m?94m?9由PM?2MQ,可得PM?2MQ,
??????????9?4m29?t222m?1?t?9, 即有?y2?2y2,代入韦达定理得t?,即有,即有221?4m4t?42则?OPQ的面积为:
23?t2?1?4?16, 41322当t?5?9,由图示可得t?0,此时m?, ?OPQ的面积取得最大值,且为?4?3,
441故所求直线方程为x??y?5.
2S?11t?y1?y2?t?22?y1?y2?2?4y1y2 ?6t?t?1?28t64t22?t2?1?2 ???exx?ex?1, f??1??1,f?1??e?1, 21.解:(1)f??x??2x ?f?x?在x?1处的切线方程为y?e?1?x?1,即x?y?e?2?0
xex?1?xe?1?x?(2)证明:f?x??1? xx??设??x??e?1?x,???x??e?1,
xx???x??0?x?0,故???x?在???,0?内递减,在?0,???内递增
???x????0??0即ex?1?x?0,
x当0?x?ln?1?a?时,f?x??1?a?e?1?x?ax,
??即当0?x?ln?1?a?时,ex?1??1?a?x?0, (Ⅰ) 当?ln?1?a??x?0时,ex?1??1?a?x?0, (Ⅱ) 令函数g?x??ex?1??1?a?x,h?x??ex?1??1?a?x 注意到g?0??h?0??0,故要证(Ⅰ),(Ⅱ),
只需要证g?x?在0,ln?1?a?内递减,h?x?在?ln?1?a?,0递增 当0?x?ln?1?a?时,g??x??ex??1?a??ex????ln?1?a???1?a??0
a2??1?a???0
1?a当?ln?1?a??x?0时,h?x??e??1?a??e?ln?1?a?综上,对任意a?0,当0?x?ln?1?a?时,f?x??1?a
2?代入上式得22. 解:(Ⅰ)依题意得圆C的一般方程为?x?1??y?4,将x??cos?,y??sin2?2?2?cos??3?0,所以圆C的极坐标方程为?2?2?cos??3?0;???????4分
(Ⅱ)依题意得点P?1,1?在直线l上,所以直线l的参数方程又可以表示为?22代入圆C的一般方程为?x?1??y?4得5t?2t?3?0,
2?x?1?2tt为参数?, ??y?1?t23?0,t1t2???0, 55所以t1,t2异号,不妨设t1?0,t2?0,所以PA?5t1,PB??5t2,
设点A,B分别对应的参数为t1,t2,则t1?t2?25. ???????10分 523. 解:(Ⅰ)因为x?1?x?3??x?1???x?3??4,当且仅当?3?x?1时取等号,
所以PA?PB?5?t1?t2??故m?4,即t?4. ???????5分 (Ⅱ)x???1,0?. 则x?1< 0. x?3 >0. 由已知得1-x?x?3>x?a在x???1,0?上恒成立
?x?4
?实数a的取值范围是(-4,3)???????10分
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库高三第一次月考数学试题 - 文科(2)在线全文阅读。
相关推荐: