教学目标:
1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;
2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;
3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.
教学重点:
两圆的五种位置与两圆的半径、圆心距的数量之间的关系.
教学难点:
两圆位置关系及判定.
(一)复习、引出问题
1.复习:直线和圆有几种位置关系?各是怎样定义的?
(教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的
2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?
(二)观察、分类,得出概念
1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))
(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例. (图(6))
2、归纳:
(1)两圆外离与内含时,两圆都无公共点.
(2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一
(3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).
教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?
结论:在同一平面内任意两圆只存在以上五种位置关系.
(三)分析、研究
1、相切两圆的性质.
让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:
如果两个圆相切,那么切点一定在连心线上.
这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明
2、两圆位置关系的数量特征.
设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)
两圆外切 d=R+r;
两圆相交 R-r
两圆内切两圆外离两圆内含
d=R-r (R>r); d>R+r; dr);
说明:注重“数形结合”思想的教学.
(四)应用、练习
例1: 如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米
求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?
(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?
解:(1)设⊙P与⊙O外切与点A,则
PA=PO-OA
∴PA=3cm.
(2)设⊙P与⊙O内切与点B,则
PB=PO+OB
∴PB=1 3cm.
例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.
求证:⊙O与⊙B相外切.
证明:连结BO,∵AC为⊙O的直径,AC=12,
∴⊙O的半径 ,且O是AC的中点
∴ ,∵∠C=90°且BC=8,
∴ ,
∵⊙O的半径 ,⊙B的半径 ,
∴BO= ,∴⊙O与⊙B相外切.
练习(P138)
(五)小结
知识:①两圆的五种位置关系:外离、外切、相交、内切、内含;
②以及这五种位置关系下圆心距和两圆半径的数量关系;
③两圆相切时切点在连心线上的性质.
能力:观察、分析、分类、数形结合等能力.
思想方法:分类思想、数形结合思想.
(六)作业
教材P151中习题A组2,3,4题.
教学目标:
探索圆与圆几种位置及两圆相切时两圆圆心距.半径的数量关系的过程.
教学重点及教学难点:了解圆与圆的几种位置关系及两圆相切时圆心距d、半径R和r的数量关系
一.创设问题情境,引入新课
我们已经研究过点和圆的位置关系,还探究了直线和圆的位置关系,它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.
二.新课讲解
(一). 探索圆和圆的位置关系
在一张透明纸上作一个⊙O.在另一张透明纸上作一个与⊙O1半径不等的⊙O2.两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?
相互交流,总结出不同的位置关系. 投影片(§3.6.1)
(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.
?外离?外切(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离?,相切?
?内切.?内含
(二)、例题讲解 教师出示投影片(§3.6.2)(本节练习2)然后做好引导。
(三)、想一想
如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?〔如图(2)〕
通过讨论,我们可以得出结论:两圆相内切或外切时,两圆的连心线一定经过切点,图(1)和图(2)都是轴对称图形,对称轴是它们的连心线.
(四)、议一议 投影片(§3.6.3) 设两圆的半径分别为R和r.
(1)当两圆外切时,两圆圆心距d与R和r具有怎样的关系?反之当d与R和r满足这一关系时,这两个圆一定外切吗? (2)两圆内切时(R>r)时呢?
[由此可知,当两圆相外切时,有d=R+r,反过来,当d=R+r时,两圆相外切,即两圆相外切?d=R+r. 当两圆相内切时,有d=R-r,反过来,当d=R-r时,两圆相内切,即两圆相内切?d=R-r.
三.课堂练习随堂练习四.课时小结
本节课学习了如下内容:1.探索圆和圆的五种位置关系;
2.讨论在两圆相切时,图形的轴对称性,以及切点和对称轴的位置关系; 3.探讨在两圆外切或内切时,圆心距d与R和r之间的关系. 五.课后作业
教学目标
1、掌握相交两圆的性质定理;
2、掌握相交两圆问题中常添的辅助线的作法;
3、通过例题的分析,培养学生分析问题、解决问题的能力;
4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美.
教学重点
相交两圆的性质及应用.
教学难点
应用轴对称来证明相交两圆连心线的性质和准确添加辅助线.
教学活动设计
(一)图形的对称美
相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢?
(二)观察、猜想、证明
1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形.
2、猜想:“相交两圆的连心线垂直平分公共弦”.
3、证明:
对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成.
已知:⊙O1和⊙O2相交于A,B.
求证:Q1O2是AB的垂直平分线.
分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B.
证明:连结O1A、O1B、O2A、O2B,∵O1A=O1B,
∴O1点在AB的垂直平分线上.
又∵O2A=O2B,∴点O2在AB的垂直平分线上.
因此O1O2是AB的垂直平分线.
也可考虑利用圆的轴对称性加以证明:
∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴.
∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上.
∴A点关于直线O1O2的对称点只能是B点,
∴连心线O1O2是AB的垂直平分线.
定理:相交两圆的连心线垂直平分公共弦.
注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线.
(三)应用、反思
例1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。
求∠OlAB的度数.
分析:由所学定理可知,O1O2是AB的垂直平分线,
又⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙O l和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形.从而可由
∠OlAO2=60°,推得∠OlAB=30°.
解:⊙O1经过O2,⊙O1与⊙O2是两个等圆
∴OlA=O1O2=AO2
∴∠O1A O2=60°,
又AB⊥O1O2
∴∠OlAB =30°.
例2、已知,如图,A是⊙O l、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙O l、⊙O2于M、N。
求证:AM=AN.
证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC= AM,AD= AN.
∵OlP=O2P ,∴AD=AM,∴AM=AN.
例3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F.
求证:EC∥DF
证明:连结AB
∵在⊙O2中∠F=∠CAB,
在⊙Ol中∠CAB=∠E,
∴∠F=∠E,∴EC∥DF.
反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解.
(四)小结
知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦.该定理可以作为证明两线垂直或证明线段相等的依据.
能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用.
(五)作业 教材P152习题A组7、8、9题;B组1题.
探究活动
问题1:已知AB是⊙O的直径,点O1、O2、…、On在线段AB上,分别以O1、O2、…、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,…,⊙On与⊙On-1外切且与⊙O内切.设⊙O的周长等于C,⊙O1、⊙O2、…、⊙On的周长分别为C1、C2、…、Cn.
(1)当n=2时,判断Cl+C2与C的大小关系;
(2)当n=3时,判断Cl+C2+ C3与C的大小关系;
(3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论.
提示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+ C3=C;(3)Cl十C2十…十Cn=C.
问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转?
提示:1、实验:用硬币作初步实验;结果硬币一共转了4转.
2、分析:当你把动圆无滑动地沿着 圆周长的直线上滚动时,这个动圆是转 转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了.在我们这个题目中,那动圆绕着相当于它的圆周长
的弧线旋转的时候,一共走过的不是 转;
一、课题:初中九年级数学上册《圆和圆的位置关系》第一课时
二、教材分析:
1、教材的地位和作用
圆是在学习了直线图形的有关性质的基础上,来研究的一种特殊曲线图形。它是常见的几何图形之一,在初中数学中占有重要地位,中考中分值占有一定比例,与其它知识综合性强。而本节课《圆和圆的位置关系》的第一节,它是在学习点与圆以及直线与圆的位置关系基础上,对圆与圆的位置关系进行研究.学生亲自动手实践,自主探究圆和圆的位置关系,观察分析,猜想验证,完成从感性到理性的发生发展的认知过程.然后知识遵循了从实践走向数学,从数学走向生活,让学生学以自用,把数学知识与现实生活紧密相联。 本节内容共安排2课时,第一课时让学生明白圆和圆的位置关系,知道五种关系,并能用它解决问题。第二课时强化位置关系的运用,重点解决两圆相交的推理题、计算题,欣赏中考真题。
2、教学目标: (1)知识目标
1.经历探索圆与圆的位置关系,培养学生的探究能力; 2.了解圆与圆之间的几种位置关系;
3.能够利用圆和圆的位置关系和数量关系解题. (2)能力目标
1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.
2.通过实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力. (3)情感态度价值观
学生经过操作、实验、发现、确认等活动,从探索两圆位置关系地过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感。
3、教材重、难点的处理
根据教学内容和学生实际、遵循课程标准,在认真钻研教材的基础上,本节课我将圆探索圆与圆之间几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系为重点。将探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程作为两个难点。将抽象的文字叙述,转化为图形,通过学生自动手操作课件演示,突破“探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程”这一重难点。题例重转化,精分析,并演示,师生共同完成,
最后辅之一相关练习题,得以巩固。
4、教法、学法
A、教法:基于知识较抽象,学生不易理解,我将采用引导探究→师生合作为主的教学方法,让学生动起来,主动去发现加解决问题; B、学法:主动实践→猜想结论→运用解题
三、学情分析:九年级学生对圆有一定的认识,但对圆的相关性质掌握较少,对知识的转化能力较差,重在要学生参与,主动探究,增加解决实际问题的能力。由于九(1)班有44名学生,他们中一半的学习基础较好,独立学习的能力也比较强,能在课前对将要教学内容进行预习,在课堂上也能积极发言,作业也能独立完成;但也有部分学困生在知识的理解和动手的能力上存在问题。因此要求他们对本课的内容进行预习熟知。通过预习将教学的重点和难点应放在两圆圆心距与两圆半径间的数量关系的推导总结上。
大部分学生对这节课的学习有很高积极性,加上课件动画中图片和总结圆和圆的位置关系的定义、圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系动画效果采用,学生的学习主动性和探求知识的情绪也会很高,运用课件也能激发他们学习的欲望。
但本班学习相对较困难的学生,对重点和难点的理解可能存在一定困惑。对这种个别现象,不做强制性要求,只帮助他们能理解圆和圆的位置关系并记住两圆圆心距与两圆半径间的数量关系即可。
四、教学过程
(一)、复习导入:请说出点与圆;直线与圆的位置关系,并分别说出判定方法
情景创设:我们生活在丰富多彩的图形世界里,圆与圆组成的图形是我们生活中最常见的画面。比如:自行车的两个轮子、奥运会的会标、皮带轮、红绿灯等照片(大屏幕演示),你还能举出两个圆组成的图形吗?(学生举例)。
(设计意图:展现生活中圆与圆组成的图形并由学生举出实例,丰富学生对客观世界中两个圆之间多种不同位置关系的感受,为学生自主探索提供可能。)
(二)、新授[活动一]
问题1,圆和圆有哪些位置关系?(分组讨论)
教师课前布置好:每人都在纸上画两个半径不等的圆,每个人都准备在纸上移动其中一个圆,让学生观察两圆的位置关系和公共点的个数。
让学生自己画出可能会出现的几种情况,并标清交点的个数(按从远到近的顺序)
问题2,试一试你能不能描述两圆的各种位置关系? 学生思考回答,师生共同总结:
1.两个圆没有公共点,就说这两个圆相离,如上图中的(1)、(5)、(6),它们又有何区别?讨论得出其中(1)叫外离,(5)(6)叫内含,(6)是两圆同心,是两圆内含的一种特殊情况。
2.两圆只有一个公共点,就说这两圆相切,如上图是的(2)(4),同样找出它们的区别,其中(2)叫外切,(4)叫内切。
3.两圆有两个公共点,就说这两个圆相交,如上图(3)。因此两园的位置关系为:(大屏幕投影)
(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图1)
(2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图2)
(3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图3)
(4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图4)
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图5).两圆同心是两圆内含的一个特例.(图6)
大屏幕展示圆和圆的五种位置关系:外离、外切、相交、内切、内含。
问题3,两个圆的位置关系发生变化的时候,圆心距d与两个圆的半径R与r(R>r)之间有没有内在的联系?请同学们交流一下(给出一定的时间)大屏幕演示两圆由远到近的运动情形,让学生观察圆心距d的变化,然后让学生进行归纳。
教师重点关注:学生思考问题的全面性和准确性,尤其是对两圆相交时的圆心距的范围考虑的是否到位。(教师可提示利用三角形三边之间的关系来解决问题) 师生共同总结:(大屏幕出示)
两圆外离d>R+r
两圆外切d=R+r 两圆相交R-r 两圆内切d=R-r (R>r) 两圆内含dr) [活动二]练习巩固,大屏幕出示: 1、若两圆有唯一公共点,且两圆半径分别为5和2,则两圆圆心距为 。 2、设⊙O和⊙P的半径分别为R、r,圆心距为d。在下列情况下,两圆的位置关系怎样? (1)R=6,r=3,d=4 (2)R=5,r=2,d=1 (3)R=7,r=3,d (4)R=5,r=2,d=7 (5)R=4, r=1, d=6 教师重点关注:学生应用 “数量关系”判定两圆“位置关系”的准确性,尤其注意,只有d>R- r 或只有d (设计意图:进一步让学生理解新知,并能熟练准确的应用新知,培养学生全面细致的良好思维品质。) 3、大屏幕出示问题: 例 如图,OO的半径为4cm,点P是OO外一点,OP=6cm。求 (1)以P为圆心作OP OP与OO外切,小圆OP的半径是多少? (2)以P为圆心作OP与OO内切,大圆OP的半径是多少? 教师给出图形、板书解答过程。 (设计意图:培养学生严谨缜密的思维品质,加强“分类讨论”数学思想的训练。) (三)、拓展联系:试一试: 一块铁板,上面有A、B、C三个点,经测量,AB=13cm,BC=14cm,CA=9cm,以各顶点为圆心的三个圆两两外切。求各圆的半径。 教师重点关注:应用新知解决问题的能力,进一步巩固新知。 (设计意图:渗透三圆相切的情况,培养学生分析、探究问题的能力。) [活动三] 拓展探索: 两个圆组成的图形是轴对称吗?如果是那么对称轴是什么?如果两圆相切,切点与对称轴有什么关系?提示,学生可以用折纸方法进行探究。(学生分组讨论,小组选代表回答问题) 大屏幕出示:正确结论。 两圆组成的图形是轴对称图形,对称轴是通过两圆圆心的直线(连心线),两圆相切时,因为切点是它们唯一的公共点,所以切点一定在连心线上即对称轴上。 (设计意图:设计折纸活动实质上是让学生感知两圆组成的图形是轴对称图形,并让学生通过自己的活动从心理上认同经过两圆圆心的直线(即连心线)是两圆组成图形的对称轴为探索两相切、两圆相交的性质创设学习情境。) (四)、小结 这节课你有哪些收获?有何体会?你认为自己的表现如何? 引导学生回顾、思考、交流。 (五)、作业: 1、课本51页,习题 3、 4、5。 2、课下探究:相交两圆的连心线与公共弦有什么样的结论。 3、写一篇数学日记,并解决2—3个问题。 (六)、板书设计 圆和圆的位置关系 两圆的位置关系 d与r1 、r2 之间的关系 例题板书 外离 d>r1+r2 外切 d=r1 +r2 相交 r1 -r2 d=r1 -r2 内含 d 五、教学反思 由于本节圆与圆的位置关系是新课,这节课的内容与上节“直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂。因此,我通过让学生动手操作类比直线与圆的位置关系,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况。在与两圆位置关系相应的三量的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法。这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用。 当然也有不足之处,比如:虽然我竭力提醒自己要体现出以学生为本的课改精神,但在具体操作中还是会不自觉地喜欢代学生表达观点,往往会发生,学生还没把话说完,我已经急着归纳了。今后我会更加努力,争取向课堂要效率。 《圆与圆的位置关系》的教案 《圆与圆的位置关系》公开课教案 一、引入课题 同学们,看看这是什么?(课件出示:北京奥运会金银铜牌图) 还记得在我国举行的北京奥运会上,我国的运动健儿们一共获得了多少枚这样的奖牌?(100枚)运动健儿们取得了辉煌的成绩,让我们每一个中国人都感到——自豪、骄傲! 这些奖牌什么形状的?说说你在日常生活中还见过哪些圆形的事物?(学生列举生活中的圆形)看来,圆在我们生活中的应用非常广泛! 老师带来了一些生活中有关圆的图片,想看看吗?(课件展示)从这些事物中,我们同样找到了圆,有的是利用了圆的美观,有的是利用了圆的特性。今天这节课就让我们一起走进圆的世界,去探索和发现它的奥秘! 出示课题:认识圆 二、动手操作,探究新知 1、圆和平面直线图形的区别 课前,老师请大家自己在家里画一个圆并剪下来,请大家拿出你做的圆! 请你像老师这样用手摸一摸圆形的边,观察一下圆形,说一说,和我们以前学过的三角形、长方形、正方形、平行四边形等平面图形有什么不同?(通过观察、比较圆和长方形、正方形等图形的区别,知道是平面上的一种曲线图形。) 下面让我们进一步来研究圆这种曲线图形吧! 2、认识圆的各部分名称。 (1)圆心 请大家把手上的这个圆对折一次(师出示大圆演示),打开,再换个方向对折,再打开,你发现了什么?这两条折痕相交吗?再换不同的方向对折一次,有几条折痕?这些折痕相交于圆中心的一点,这一点叫做圆心,一般用字母O表示。(师板书,课件演示)请同学们在你的圆上描出圆心,并用字母O表示。 (2)半径和直径(学生自学课本56页并用线段划出定义。) 除了圆心,你知道圆还有什么部分吗?(板书:半径直径)那什么叫半径?什么叫直径呢?下面请大打开书56页自学一下,并用红笔把概念划出来读一读。(学生自学完。)请同学来说说什么叫半径?(学生读出概念,然后课件演示)什么叫圆上任意一点?请你在自己的圆上画出一条半径,并用字母r表示。 谁来说说什么叫直径?(学生读出概念,然后课件演示) 请你在自己的圆上画出一条直径,并用字母d表示。 (3)巩固练习:找出图中的半径和直径。 (明确半径连接圆心和圆上任意一点;直径必须通过圆心、两端在圆上) 3、探究圆的特征。 (1)通过学习,我们认识了圆心、半径和直径,下面我们来个小比赛:要求在30秒钟内,准确的画出3半径和3条直径,比一比谁画得又快又好? (师计时,生在圆纸上画半径和直径。) 画完以后,同桌交换检查画的半径和直径是否准确? (2)同桌讨论: 在同一个圆内,你测量一下这些半径和直径的长度,有什么发现? 学生汇报: (所有的半径都相等,所有的直径都相等。)板书:都相等 老师的这个大圆跟你们的圆半径相等吗?半径相等需要什么前提?(在同一个圆内)板书:在同一个圆还发现了什么?半径与直径的长度有什么关系?(直径是半径的2倍,半径是直径的一半。)你能用字 母表示一下它们之间的这种关系吗? 板书:d=2rr=d÷2 4、探索画圆的方法。 课前,请大家准备的这个圆,你是用什么方法画出来的?用了什么工具? (学生说出不同方法) 怎样才能既准确又方便的画出一个圆呢?(用圆规来画圆。)借助实物来画圆受实物所限,画出的圆大小是固定的,不能随意变化,所以用圆规画圆应该是!。 (1)认识圆规并学习画圆 我们来观察一下圆规是怎样的?有几只脚?一只脚带着针尖,另一只脚带着笔尖。下面请同学们打开书57页,自学一下用圆规画圆的方法! (学生自学完后)请同学们自己试一试用圆规在本子上画一个圆。 (学生用圆规画圆,老师巡视。) 谁愿意出来示范并说说画圆的步骤?(请一学生在实物投影上画圆并说步骤。) 大家想一想,两脚间的距离实际是什么的长度?(半径) 我们用简洁的语言概括一下画圆的步骤:定圆心定半径旋转一周(课件出示) (2)练习画圆 请大家按要求来画一个圆:用圆规画出半径是2厘米的一个圆,并用字母O、r、d分别标出它的圆心、半径、和直径。(展示学生画的圆,同桌互相评价。) 结合刚才画圆的过程,大家思考一下,画圆时圆心和半径各起了什么作用? 也就是:圆心决定圆的位置半径决定圆的大小(课件出示) 三、应用新知,解决问题: 1、判断题。(基础练习重点在于深入理解概念。) (1)画圆时,圆规两脚间的距离是圆的直径。 (2)两端都在圆上的线段是直径。() (3)在同一个圆内,圆心到圆上任意一点的距离都相等。() (4)直径是半径的2倍。() (5)直径3厘米的圆比半径2厘米的圆要大些。() 2、课件出示:森林王国举行的赛车比赛 老师:同学们,森林王国正在举行赛车比赛,我们一起去看看!参加比赛的小动物分别是小牛、小兔和小狗,他们呀,正在整装待发。在比赛之前,老师想让你们猜一猜,谁的车子跑得最快?(小狗) 3、2、1、GO!同学们都猜对了!小狗的车轮是什么形状?(圆形)车轮做成圆形为什么就能跑得又快又稳?你能利用这节课学到的知识来解释一下吗? (这是利用圆心到圆上任意一点的距离都相等的特性,车轴放在圆心的位置,车轮滚动时车轴保持平稳状态,使行进的车辆也保持平稳状态。) 四、谈收获,回顾知识点。 你这节课有什么收获?(让学生谈收获。) 五、作业布置。 1、书上完成58页第1、3题,60页第1、2题。 2、利用圆规和三角板,设计一幅有关于圆的图案。 板书设计: 在同一个圆内 半径无数条都相等 直径无数条都相等 d=2rr=d÷2 教学目标: 1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径;能借助工具画图,能用圆规画指定大小的圆;能应用圆的知识解释一些日常生活现象。 2、使学生在活动中进一步积累认识图形的学习经验,增强空间观念,发展数学思考。 3、使学生进一步体验图形与生活的联系,感受平面图形的学习价值,提高数学学习的兴趣和学好数学的自信心。 教学重点: 在观察、操作、画图等活动中感受并发现圆的有关特征,能借助工具画图,能用圆规画指定大小的圆。 教学难点:能应用圆的知识解释一些日常生活现象 教学准备:多媒体课件,一些圆形物体和圆形纸片,圆规 学具准备:圆规、学具以及收集的一些圆形物体的图片 教学过程: 课前谈话:羊吃草的故事(猜谜) 有一个人在一片青草地上钉了一根木桩,用一根绳子拴了一只羊在那里。 先请同学们猜测一个字。再猜两个字的水果名 师:我们来看一看羊吃草的范围有多大? (用电脑演示羊拉紧绳子旋转一周的情况,让学生直观的看到原来羊能吃到的草的范围是一个圆。) 一、谈话导入 1、对于圆,同学们一定不会感到陌生吧,生活中,你们在哪儿见过圆形? 2、今天,老师也给大家带来一些。见过平静的水面吗?如果我们从上面往下丢进一颗小石子,(电脑演示),你发现了什么? 3、其实这样是现象在大自然中随处可见,让我们一起来看一看。(欣赏)从这些自然现象中,你同样找到了圆吗? 4、有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起去探索圆的奥秘,好吗?(板书课题:圆的认识) 二、动手尝试,认识圆的特征 (一)、初步认识圆 1、说了这么多圆,看了这么多圆,你想不想亲自动手画一个圆?先动脑筋想一想,再用你手头的的。(问题就只工具动手画一画。(学生动手画圆) 2、引导学生交流所画的圆,并让学生说说是怎样画要停留在借助什么来画的,不要作过深的追问) 3、比较:看看你所画的圆,和以前学过的平面图形有什么不同? 交流:以前所学的图形都是由线段围成的,而圆是由曲线围成的。 (二)、用圆规画圆 1、刚才有同学用圆规画出了一个圆,其他同学会画吗?请拿出准备的圆规,在白纸上画一个圆。 交流:谁来说说用圆规是怎样画圆的?或者说在画的过程中要注意些什么?(指名交流,引导学生说出圆规的使用方法。) 要点:针尖要戳在纸上,另一只脚是笔,两脚随意叉开。 2、刚才大家画的圆有大有小,假如我要我们全班同学画一个一样大的圆,行吗?你有什么建议? 3、全班画一个直径是4厘米的圆:我们把两脚叉开4厘米来画一个圆。(画好的同学拿出剪刀,把画的圆剪下来。) (三)、圆各部分名称 1、圆和其它图形一样也有它各部分的名称,请同学们打开书,把例2的一段话认真地读一读。 2、反馈交流:你知道了关于圆的哪些知识? (圆心、半径、直径,分别用字母O、r、d表示。) 根据学生回答,教师在黑板上板书。并要求学生在自己的圆上将个部分标一标、画一画。 3、完成“练一练”第1题。 出示3个圆,分别判断,说说是怎样想的。 (四)、圆心、半径、直径的关系 1、学到现在,关于圆,该有的知识我们也探讨地查差不多了。那你们觉得还有没有什么值得我们深入地去研究?其实不说别的,就圆心、直径、半径,还藏着许多丰富的规律呢,同学们想不想自己动手研究研究?大家手头都有圆片、直尺、圆规等等,这就是咱们的研究工具。待会儿就请大家动手折一折、量一量、比一比、画一画,相信大家一定会有不小的收获。另外,我还有两点小小的建议:第一,研究过程中,别忘了把你们组的结论,哪怕是任何细小的发现都记录在自备本上,到时候一起来交流。第二,实在没啥研究了,老师还为每个小组准备了一份研究提示,到时候打开看看,或许会对大家有所帮助。 学生小组活动。 2、反馈交流: 要点: (1)、在同一个圆里可以画无数条半径,无数条直径。(强调在同一个圆里) (2)、在同一个圆里,半径的长度都相等,直径的长度也都相等。(强调在同一个圆里) (3)、同一个圆里半径是直径的一半,r=2/d;直径是半径的2倍,d=2r。 (4)、圆是轴对称图形,有无数条对称轴,这些对称轴就是圆的直径。 还有其他的发现吗?学生可以自由说。 3、完成练习十七第1题。 学生自由填表,反馈交流。 三、应用拓展 完成“练一练”第2题。 (1)、读题,说说是怎样理解题意的。(注意说清直径是5厘米,圆规两脚叉开即半径应该是2.5厘米) (2)、学生画一画,反馈交流。 四、全课总结 通过大家的探究,我们已经获得了许多关于圆的知识,现在让我们再来看看刚才的画面(课件再次显示) 平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度解释这一现象了吗? 对,简单的自然现象中蕴涵着丰富的数学规律。其他一些现象中为什么会出现圆相信大家一定能解释了。其实,又何止是大自然对圆情有独钟呢,在我们生活的每一个角落,圆都扮演着重要的角色,并成为没的化身,让我们一起来欣赏--感觉怎么样? 这不就是圆的魅力所在吗? 五、布置作业 教学目标: 1、给合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。 2、通过观察、操作、想象等活动,发展空间观念。 教材分析: 重点在观察、操作中体会圆的特征。知道半径和直径的概念。 难点圆的特征的认识及空间观念的发展。 教具准备: 教学圆规、电化教具、课件 教学过程: 一、观察思考 1、(呈现教材套圈游戏中的第一幅图)这些小朋友是怎么站的?在干什么?你对他们这种玩法有什么想法吗?(从公平性上考虑)得到:大家站成一条直线时,由于每人离目标的距离不一样导致不公平。 2、(呈现教材套圈游戏中的第二幅图)如果大家是这样站的,你觉得公平吗?为什么?得到:大家站成正方形时,由于每人离目标的距离也不一样导致也不公平。 3、为了使游戏公平,你们能不能帮他们设计出一个公平的方案?(学生思考)学生想到圆后,出示第三幅图,提问:为什么站成圆形就公平了呢?(每人离目标的距离都一样) 4、上面我们接触了三种图形-----直线、正方形、圆。其中圆是有点特殊的,你能说说圆与正方形等图形的不同之处吗?举出生活中看到的圆的例子。 二、画圆 1、你们谁能画出圆来吗?动手试一试。 2、谁来展示一下自己画的圆,并说说你是怎样画的?画的时候要注意什么?其他同学有想法可以补充。 3、思考:以上这些画法中有什么共同之处?注意的问题你是怎么想到的?(固定一个点和一个长度,引出圆心和半径) 三、认一认 1、教师边画圆边讲概念。(概念讲解一定要结合图形,并要举一些反例)强调:圆心是一个点,半径和直径是线段。 2、半径和直径的辨认。 四、画一画,想一想 1、画一个任意大小的圆,并画出它的半径和直径。想:在同一个圆中可以画多少条半径、多少条直径?同一个圆中的半径都相等吗?直径呢?(放动画) 2、以点A为圆心画两个大小不同的圆。 3、画两个半径都是2厘米的圆。 4、把自己画的圆面积在小组内交流。你们画的圆的位置和大小都一样吗?知道为什么吗? 五、应用提高 讨论:圆的位置和什么有关系?圆的大小和什么有关系? 六、作业 1、教材第5页练一练 2、在平面上先确定两个不同的点A和B,再画一个圆,使这个圆同时经过点A和点B(就是这两个点都在所画的圆上),这样的圆能画几个?(提高题) 训练学生的观察能力,发现问题的能力 不直接说出圆,把思考的空间留给学生 在画图中体会圆的特征 思考共同之处时再一次体会圆的特征 通过正反例的练习,加深对半径和直径的理解 动手操作,理解画圆的关键是定圆心(位置)和半径(大小) 巩固提高,满足不同学生要求 板书设计: 圆(本质特征):圆上各点到定点(半径)的距离都相等。 圆的画法: 圆的相关概念:圆心,半径,直径 同一个圆中,有无数条半径,它们都相等;同一个圆中有无数条直径,它们也都相等。 教学后记: 在学生已认识圆的基础上,深入的了解圆的各部份名称。学生对圆心与圆 的`半径的作用能理解,掌握了本课的重点内容。 教学目标: 1.使学生理解直线和圆的相交、相切、相离的概念。 2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。 3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。 重点难点: 1.重点:直线与圆的三种位置关系的概念。 2.难点:运用直线与圆的.位置关系的性质及判定解决相关的问题。 教学过程: 一.复习引入 1.提问:复习点和圆的三种位置关系。 (目的:让学生将点和圆的位置关系与直线和圆的位置关系进行类比,以便更好的掌握直线和圆的位置关系) 2.由日出升起过程中的三个特殊位置引入直线与圆的位置关系问题。 (目的:让学生感知直线和圆的位置关系,并培养学生把实际问题抽象成数学模型的能力) 二.定义、性质和判定 1.结合关于日出的三幅图形,通过学生讨论,给出直线与圆的三种位置关系的定义。 (1)线和圆有两个公共点时,叫做直线和圆相交。这时直线叫做圆的割线。 (2)直线和圆有唯一的公点时,叫做直线和圆相切。这时直线叫做圆的切线。唯一的公共点叫做切点。 (3)直线和圆没有公共点时,叫做直线和圆相离。 2.直线和圆三种位置关系的性质和判定: 如果⊙O半径为r,圆心O到直线l的距离为d,那么: (1)线l与⊙O相交 d<r (2)直线l与⊙O相切d=r (3)直线l与⊙O相离d>r 三.例题分析: 例(1)在Rt△ABC中,AC=3cm,BC=4cm,以C为圆心,r为半径。 ①当r= 时,圆与AB相切。 ②当r=2cm时,圆与AB有怎样的位置关系,为什么? ③当r=3cm时,圆与AB又是怎样的位置关系,为什么? ④思考:当r满足什么条件时圆与斜边AB有一个交点? 四.小结(学生完成) 五、随堂练习: (1)直线和圆有种位置关系,是用直线和圆的个数来定义的;这也是判断直线和圆的位置关系的重要方法。 (2)已知⊙O的直径为13cm,直线L与圆心O的距离为d。 ①当d=5cm时,直线L与圆的位置关系是; ②当d=13cm时,直线L与圆的位置关系是; ③当d=6。5cm时,直线L与圆的位置关系是; (目的:直线和圆的位置关系的判定的应用) (3)⊙O的半径r=3cm,点O到直线L的距离为d,若直线L 与⊙O至少有一个公共点,则d应满足的条件是 (A)d=3 (B)d≤3 (C)d<3 d=“”>3 (目的:直线和圆的位置关系的性质的应用) (4)⊙O半径=3cm。点P在直线L上,若OP=5 cm,则直线L与⊙O的位置关系是() (A)相离(B)相切(C)相交(D)相切或相交 (目的:点和圆,直线和圆的位置关系的结合,提高学生的综合、开放性思维) 想一想: 在平面直角坐标系中有一点A(—3,—4),以点A为圆心,r长为半径时, 思考:随着r的变化,⊙A与坐标轴交点的变化情况。(有五种情况) 六、作业:P100—2、3 《圆与圆的位置关系》的公开课教案 教学目标: 1、知识目标:了解两圆相交、外离、内含的概念;掌握两圆的五种位置关系及判定方法,《圆与圆的位置关系》公开课教案。 2、能力目标:a)使学生学会判定两圆的五种位置位置关系b)通过学生的观察、练习、思考、表达来培养他们的观察、分析、比较、概括、抽象等 能力;并进一步培养他们的发现、分析、解决、深化问题的能力。 3、情感目标:a)通过多媒体演示,让学生体会图形中的'动态美、统一美、和谐美。b)在研究两圆的位置关系和例题教学过程中,让学生了解用运动的观点去观察事物,了解事物之间的从一般到特殊,从特殊到一般的辩证关系;学会利用分类、类比、化归、数形结合等数学思想处理问题。教学重点:两圆的位置关系的判别方法和性质;教学难点:各种位置关系在计算中的运用。 教学方法:类比发现法、启发诱导法 教学手段:多媒体教学过程: 一、类比引入:上一节我们学习了直线和圆的位置关系,请说出直线和圆的位置关系有哪几种?(多媒体动态演示)直线和圆相离<=>d>r直线和圆相切<=>d=r直线和圆相交<=>dr),圆心距为d,那么:(1)两圆外离d>R+r(2)两圆外切d=R+r(3)两圆相交R-r 三、例题教学 例:如图⊙O的半径为5cm,点P是⊙O外一点,OP=8cm。求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙o的半径是多少?(2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?解:(1)设⊙O与⊙P外切于点A,则PA=OP-OA∴PA=3cm(2)设⊙O与⊙P内切于点B,则PB=OP+OB∴PB=13cm.四、及时练习1)⊙01和⊙02的半径分别为3cm和4cm,设(1) 0102=8cm(2)0102=7cm(3)0102=5cm(4)0102=1cm(5)0102=0.5cm(6)01和02重合,⊙01和⊙02的位置关系怎样?答:(1)两圆外离(2)两圆外切(3)两圆相交(4)两圆内切(5)两圆内含6)两圆同心2)两个圆的半径的比为2:3,内切时圆心距等于8cm,那么这两圆相交时,圆心距d的取值范围是多少?解:设大圆半径R=3x,小圆半径r=2x依题意得:3x-2x=8x=8∴R=24 cm r=16cm∵两圆相交R-r 六、课后思考题:已知⊙01和⊙02的半径分别为r和r(r>r),圆心距为d,若两圆相交,试判定关于x的方程x2-2(d-R)x+r2=0的根的情况。 七、分层作业 1. 必做题几何课本第36页 1 、2、32.选做题定圆0的半径是4cm,动圆P的半径是1cm,(1)设⊙P和⊙0相外切,那么点P与点O的距离是多少?点P可以在什么样的线上运动?(2)设⊙P和⊙O相内切,情况又怎样? 教案说明:本节课是在学习了圆的轴对称、圆心角定理、直线和圆的位置关系以及两圆相切的基础上进行的,是初中教材中最后一节研究图形间的位置关系的内容。它把直线形与曲线形交织在一起,是对前面知识的综合,同时也是高中阶段学习解析几何等知识的重要基础。另外,本节课在由直线与圆位置关系类比看研究两圆位置关系时,渗透类比思想、分类思想,培养观察、分析、比较、迁移的数学能力,在研究两圆的五种位置关系的判定和性质时,渗透数形结合思想,培养概括、抽象的数学能力。因此,这节课无论在学习数学知识,还是对学生数学思想的运用、能力的培养上,都起着十分重要的作用。 由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系: (1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线. (2)相切:直线和圆有公共点时,叫做直线和圆相切.这时直线叫做圆的切线,的公共点叫做切点. (3)相离:直线和圆没有公共点时,叫做直线和圆相离. 直线与圆的位置关系的数量特征 1、迁移:点与圆的位置关系 (1)点P在⊙O内dr. 2、归纳概括: 如果⊙O的半径为r,圆心O到直线l的距离为d,那么 (1)直线l和⊙O相交dr. 练习题: 1.直线L上的一点到圆心的距离等于⊙O的半径,则L与⊙O的位置关系是 A.相离 B.相切 C.相交 D.相切或相交 2.圆的的弦长为12cm,如果直线与圆相交,且直线与圆心的距离为d,那么() A.d<6cm B.6cm C.d≥6cm D.d>12cm 3.P是⊙O外一点,PA、PB切⊙O于点A、B,Q是优弧AB上的一点,设∠APB=α,∠AQB=β,则α与β的关系是() A.α=β B.α+β=90° C.α+2β=180° D.2α+β=180° 4.在⊙O中,弦AB和CD相交于点P,若PA=4,PB=7,CD=12,则以PC、PD的长为根的一元二次方程为() A.x2+12x+28=0 B.x2-12x+28=0 C.x2-11x+12=0 D.x2+11x+12=0 教学目标 (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径. (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化. (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题. (4)掌握直线和圆的位置关系,会求圆的切线. (5)进一步理解曲线方程的概念、熟悉求曲线方程的方法. 教学建议 教材分析 (1)知识结构 (2)重点、难点分析 ①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题. ②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用. 教法建议 (1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法. (2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结. (3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识. (4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题. 教学目标: (1)掌握圆的一般方程及其特点. (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径. (3)能用待定系数法,由已知条件求出圆的一般方程. (4)通过本节课学习,进一步掌握配方法和待定系数法. 教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径. (2)用待定系数法求圆的方程. 教学难点:圆的一般方程特点的研究. 教学用具:计算机. 教学方法:启发引导法,讨论法. 教学过程: 【引入】 前边已经学过了圆的标准方程 把它展开得 任何圆的方程都可以通过展开化成形如 ① 的方程 【问题1】 形如①的方程的曲线是否都是圆? 师生共同讨论分析: 如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得 ② 显然②是不是圆方程与 是什么样的数密切相关,具体如下: (1)当 时,②表示以 为圆心、以 为半径的圆; (2)当 时,②表示一个点 ; (3)当 时,②不表示任何曲线. 总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示. 圆的一般方程的定义: 当 时,①表示以 为圆心、以 为半径的圆, 此时①称作圆的一般方程. 即称形如 的方程为圆的一般方程. 【问题2】圆的一般方程的特点,与圆的标准方程的异同. (1) 和 的系数相同,都不为0. (2)没有形如 的二次项. 圆的一般方程与一般的二元二次方程 ③ 相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件. 圆的一般方程与圆的标准方程各有千秋: (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然. (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用. 【实例分析】 例1:下列方程各表示什么图形. (1) ; (2) ; (3) . 学生演算并回答 (1)表示点(0,0); (2)配方得 ,表示以 为圆心,3为半径的圆; (3)配方得 ,当 、同时为0时,表示原点(0,0);当 、不同时为0时,表示以 为圆心, 为半径的圆. 例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径. 分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解. 解:设圆的方程为 因为 、、三点在圆上,则有 解得: , , 所求圆的方程为 可化为 圆心为 ,半径为5. 请同学们再用标准方程求解,比较两种解法的区别. 【概括总结】通过学生讨论,师生共同总结: (1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程. (2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程. 下面再看一个问题: 例3: 经过点 作圆 的割线,交圆 于 、两点,求线段 的中点 的轨迹. 解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点. ∵ ∴ 即 化简得 点 在曲线上,并且曲线为圆 内部的一段圆弧. 【练习巩固】 (1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、、的值.(结果为4,-6,-3) (2)求经过三点 、、的圆的方程. 分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 . (3)课本第79页练习1,2. 【小结】师生共同总结: (1)圆的一般方程及其特点. (2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径. (3)用待定系数法求圆的方程. 【作业】课本第82页5,6,7,8. 圆与圆的位置关系的判断方法 一、设两个圆的半径为R和r,圆心距为d。 则有以下五种关系: 1、d>R r 两圆外离; 两圆的圆心距离之和大于两圆的半径之和。 2、d=R r 两圆外切; 两圆的圆心距离之和等于两圆的半径之和。 3、d=R-r 两圆内切; 两圆的圆心距离之和等于两圆的半径之差。 4、d<R-r 两圆内含;两圆的圆心距离之和小于两圆的半径之差。 5、d<R r 两园相交;两圆的.圆心距离之和小于两圆的半径之和。 二、圆和圆的位置关系,还可用有无公共点来判断: 1、无公共点,一圆在另一圆之外叫外离,在之内叫内含。 2、有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切。 3、有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。 圆和圆的位置关系教案 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:两圆的位置关系和两圆相交、相切的性质.它们是本节的主要内容,是圆的重要概念性知识,也是今后研究圆与圆问题的基础知识. 难点:两圆位置关系的判定与相交两圆的连心线垂直平分两圆的公共弦的性质的运用.由于两圆位置关系有5种类型,特别是相离有外离和内含,相切有外切和内切,学生容易遗漏;而在相交圆的性质应用中,学生容易把“相交两圆的公共弦垂直平分两圆的连心线.”看成是真命题. 2、教法建议 本节内容需要两个课时.第一课时主要研究;第二课时相交两圆的性质. (1)把课堂活动设计的重点放在如何调动学生的主体,让学生观察、分析、归纳概括,主动获得知识; (2)要重视圆的对称美的教学,组织学生欣赏,在激发学生的学习兴趣中,获得知识,提高能力; (3)在教学中,以分类思想为指导,以数形结合为方法,贯串整个教学过程. 第一课时 教学目标: 1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质; 2.通过两圆的位置关系,培养学生的分类能力和数形结合能力; 3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力. 教学重点: 两圆的五种位置与两圆的半径、圆心距的数量之间的关系. 教学难点: 两圆位置关系及判定. (一)复习、引出问题 1.复习:直线和圆有几种位置关系?各是怎样定义的? (教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的个数来定义的 2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢? (二)观察、分类,得出概念 1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义: (1)外离:两个圆没有公共点,并且每个圆上的'点都在另一个圆的外部时,叫做这两个圆外离.(图(1)) (2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2)) (3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3)) (4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4)) (5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6)) 2、归纳: (1)两圆外离与内含时,两圆都无公共点. (2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一 (3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切). 教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点? 结论:在同一平面内任意两圆只存在以上五种位置关系. (三)分析、研究 1、相切两圆的性质. 让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质: 如果两个圆相切,那么切点一定在连心线上. 这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明 2、两圆位置关系的数量特征. 设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略) 两圆外切d=R+r; 两圆内切d=R-r(R>r); 两圆外离d>R+r; 两圆内含dr); 两圆相交R-r 说明:注重“数形结合”思想的教学. (四)应用、练习 例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米 求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少? (2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少? 解:(1)设⊙P与⊙O外切与点A,则 PA=PO-OA ∴PA=3cm. (2)设⊙P与⊙O内切与点B,则 PB=PO+OB ∴PB=13cm. 例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作. 求证:⊙O与⊙B相外切. 证明:连结BO,∵AC为⊙O的直径,AC=12, ∴⊙O的半径,且O是AC的中点 ∴,∵∠C=90°且BC=8, ∴, ∵⊙O的半径,⊙B的半径, ∴BO=,∴⊙O与⊙B相外切. 练习(P138) (五)小结 知识:①两圆的五种位置关系:外离、外切、相交、内切、内含; ②以及这五种位置关系下圆心距和两圆半径的数量关系; ③两圆相切时切点在连心线上的性质. 能力:观察、分析、分类、数形结合等能力. 思想方法:分类思想、数形结合思想. (六)作业 教材P151中习题A组2,3,4题. 第二课时相交两圆的性质 教学目标 1、掌握相交两圆的性质定理; 2、掌握相交两圆问题中常添的辅助线的作法; 3、通过例题的分析,培养学生分析问题、解决问题的能力; 4、结合相交两圆连心线性质教学向学生渗透几何图形的对称美. 教学重点 相交两圆的性质及应用. 教学难点 应用轴对称来证明相交两圆连心线的性质和准确添加辅助线. 教学活动设计 (一)图形的对称美 相切两圆是以连心线为对称轴的对称图形.相交两圆具有什么性质呢? (二)观察、猜想、证明 1、观察:同样相交两圆,也构成对称图形,它是以连心线为对称轴的轴对称图形. 2、猜想:“相交两圆的连心线垂直平分公共弦”. 3、证明: 对A层学生让学生写出已知、求证、证明,教师组织;对B、C层在教师引导下完成. 已知:⊙O1和⊙O2相交于A,B. 求证:Q1O2是AB的垂直平分线. 分析:要证明O1O2是AB的垂直平分线,只要证明O1O2上的点和线段AB两个端点的距离相等,于是想到连结O1A、O2A、O1B、O2B. 证明:连结O1A、O1B、O2A、O2B,∵O1A=O1B, ∴O1点在AB的垂直平分线上. 又∵O2A=O2B,∴点O2在AB的垂直平分线上. 因此O1O2是AB的垂直平分线. 也可考虑利用圆的轴对称性加以证明: ∵⊙Ol和⊙O2,是轴对称图形,∴直线O1O2是⊙Ol和⊙O2的对称轴. ∴⊙Ol和⊙O2的公共点A关于直线O1O2的对称点即在⊙Ol上又在⊙O2上. ∴A点关于直线O1O2的对称点只能是B点, ∴连心线O1O2是AB的垂直平分线. 定理:相交两圆的连心线垂直平分公共弦. 注意:相交两圆连心线垂直平分两圆的公共弦,而不是相交两圆的公共弦垂直平分两圆的连心线. (三)应用、反思 例1、已知两个等圆⊙Ol和⊙O2相交于A,B两点,⊙Ol经O2。 求∠OlAB的度数. 分析:由所学定理可知,O1O2是AB的垂直平分线, 又⊙O1与⊙O2是两个等圆,因此连结O1O2和AO2,AO1,△O1AO2构成等边三角形,同时可以推证⊙Ol和⊙O2构成的图形不仅是以O1O2为对称轴的轴对称图形,同时还是以AB为对称轴的轴对称图形.从而可由 ∠OlAO2=60°,推得∠OlAB=30°. 解:⊙O1经过O2,⊙O1与⊙O2是两个等圆 ∴OlA=O1O2=AO2 ∴∠O1AO2=60°, 又AB⊥O1O2 ∴∠OlAB=30°. 例2、已知,如图,A是⊙Ol、⊙O2的一个交点,点P是O1O2的中点。过点A的直线MN垂直于PA,交⊙Ol、⊙O2于M、N。 求证:AM=AN. 证明:过点Ol、O2分别作OlC⊥MN、O2D⊥MN,垂足为C、D,则OlC∥PA∥O2D,且AC=AM,AD=AN. ∵OlP=O2P,∴AD=AM,∴AM=AN. 例3、已知:如图,⊙Ol与⊙O2相交于A、B两点,C为⊙Ol上一点,AC交⊙O2于D,过B作直线EF交⊙Ol、⊙O2于E、F. 求证:EC∥DF 证明:连结AB ∵在⊙O2中∠F=∠CAB, 在⊙Ol中∠CAB=∠E, ∴∠F=∠E,∴EC∥DF. 反思:在解有关相交两圆的问题时,常作出连心线、公共弦,或连结交点与圆心,从而把两圆半径,公共弦长的一半,圆心距集中到一个三角形中,运用三角形有关知识来解,或者结合相交弦定理,圆周角定理综合分析求解. (四)小结 知识:相交两圆的性质:相交两圆的连心线垂直平分公共弦.该定理可以作为证明两线垂直或证明线段相等的依据. 能力与方法:①在解决两圆相交的问题中常常需要作出两圆的公共弦作为辅助线,使两圆中的角或线段建立联系,为证题创造条件,起到了“桥梁”作用;②圆的对称性的应用. (五)作业教材P152习题A组7、8、9题;B组1题. 探究活动 问题1:已知AB是⊙O的直径,点O1、O2、…、On在线段AB上,分别以O1、O2、…、On为圆心作圆,使⊙O1与⊙O内切,⊙O2与⊙O1外切,⊙O3与⊙O2外切,…,⊙On与⊙On-1外切且与⊙O内切.设⊙O的周长等于C,⊙O1、⊙O2、…、⊙On的周长分别为C1、C2、…、Cn. (1)当n=2时,判断Cl+C2与C的大小关系; (2)当n=3时,判断Cl+C2+C3与C的大小关系; (3)当n取大于3的任一自然数时,Cl十C2十…十Cn与C的大小关系怎样?证明你的结论. 提示:假设⊙O、⊙O1、⊙O2、…、⊙On的半径分别为r、rl、r2、…、rn,通过周长计算,比较可得(1)Cl+C2=C;(2)Cl+C2+C3=C;(3)Cl十C2十…十Cn=C. 问题2:有八个同等大小的圆形,其中七个有阴影的圆形都固定不动,第八个圆形,紧贴另外七个无滑动地滚动,当它绕完这些固定不动的圆形一周,本身将旋转了多少转? 提示:1、实验:用硬币作初步实验;结果硬币一共转了4转. 2、分析:当你把动圆无滑动地沿着圆周长的直线上滚动时,这个动圆是转转,但是,这个动圆是沿着弧线滚动,那么方才的说法就不正确了.在我们这个题目中,那动圆绕着相当于它的圆周长的的弧线旋转的时候,一共走过的不是转;而是转,因此,它绕过六个这样的弧形的时,就转了转。 圆和圆的位置关系 教案毛成胜 广东省东莞市新星学校 毛成胜 教 材: 华师大版第九册23章2.4圆与圆的位置关系P60~62 教学目的要求: 知识目标:1、了解圆和圆五种位置的定义, 2、熟练掌握用数量关系来识别圆与圆的位置关系 能力目标:培养学生的观察、想象、分析、动手操作、概括的能力,“分类讨论”的数学思想, 情感目标:利用多种教学手段来激发学生学习的兴趣,通过鼓励和肯定学生,培养他们敢于 想象,勇于探索的学习精神。 教学重点:用数量关系来识别圆与圆的位置关系 教学难点 :用数量关系来识别圆与圆的位置关系 教学用具:多媒体 教学方法:问题、引导、直观演示、总结 学法指导:猜想、类比、观察、归纳、实验探究、合作交流 教学过程 : 圆和圆的位置关系 教案 百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教学设计圆与圆位置关系的教案(精选17篇)在线全文阅读。篇5:《圆与圆的位置关系》的教案
篇6:《圆与圆的位置关系》公开课教案
篇7:圆与圆之间的位置关系教案
篇8:圆与圆之间的位置关系教案
篇9:圆与圆之间的位置关系教案
篇10:直线与圆的位置关系教案
篇11:《圆与圆的位置关系》的公开课教案
篇12:圆与圆的位置关系教案必修2
篇13:圆与圆的位置关系教案必修2
篇14:圆与圆的位置关系教案必修2
篇15:圆与圆的位置关系
篇16:圆和圆的位置关系教案
篇17:圆和圆的位置关系 教案
相关推荐: