(2)假设结论正确。
综上所述,x为一切自然数时3、对数函数型抽象函数
对数函数型抽象函数,即由对数函数抽象而得到的函数。 例5、设f(x)是定义在(0,+∞)上的单调增函数,满足
(1)f(1);
(2)若f(x)+f(x-8)≤2,求x的取值范围。 分析:由题设可猜测f(x)是对数函数解:(1)∵(2
)即
的抽象函数,f(1)=0,f(9)=2。 ,∴f(1)=0。
,从而有f(x)+f(x-8)≤f(9),
,∵f(x)是(0,+∞)上的增函数,故
,求:
。 时有
,则x=k+1时,
,∴x=k+1时,
,解之得:8<x≤9。
例6、设函数y=f(x)的反函数是y=g(x)。如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。
分析: 由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。
解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b
,从而
,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a
+b)=g(a)·g(b)。 4、三角函数型抽象函数
三角函数型抽象函数即由三角函数抽象而得到的函数。
例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:
①当是定义域中的数时,有;
②f(a)=-1(a>0,a是定义域中的一个数); ③当0<x<2a时,f(x)<0。
试问:(1)f(x)的奇偶性如何?说明理由。 (2)在(0,4a)上,f(x)的单调性如何?说明理由。 分析: 由题设知f(x)是
的抽象函数,从而由
及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数
(这里把a看成进行猜想)。
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文抽象函数习题精选精讲(4)在线全文阅读。
相关推荐: