不等式组、一次函数、分式方程、二元一次方程组综合应用题各类中考题展
不等式组、一次函数、分式方程、二元一次方程组综合应用题各类中考题展
1.(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来. 【关键词】不等式组的简单应用
【答案】(1)可列分式方程求解,但要注意检验,否则扣分;(2)依据题意列出不等式组,注意不等号中是否有等于,根据未知数都为整数,再结合不等式组的解集,确定未知数的具体数值,有几个值,即有几种方案. 解:(1)设每个乙种零件进价为x元,则每个甲种零件进价为(x 2)元.由题意得
80x 2
100x
,
解得x 10.
检验:当x 10时,x(x 2) 0, x 10是原分式方程的解.
10 2 8(元)
答:每个甲种零件的进价为8元,每个乙种零件的进价为10元. (2)设购进乙种零件y个,则购进甲种零件(3y 5)个
3y 5 y≤95,由题意得
(12 8)(3y 5) (15 10)y 371
解得23 y≤25.
y为整数, y 24或25. 共有2种方案.
分别是:
方案一:购进甲种零件67个,乙种零件24个;
方案二:购进甲种零件70个,乙种零件25个.
2.(2009年牡丹江)某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
(1)冰箱厂有哪几种生产方案?
(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受
13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?
(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种. 【关键词】不等式组的简单应用
【答 案】解:(1)设生产A型冰箱x台,则B型冰箱为 100 x 台,由题意得:
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文不等式组、一次函数、分式方程、二元一次方程组综合应用题各类中在线全文阅读。
相关推荐: