2. 特殊值
(a)Pl?1?=1 (16.2.5a) (b)Pl??1????1? (16.2.5b)
l???(当l为奇数时)(c) Pl?0???0 (16.2.5c) l??l?1l?!!??1?2(当l为偶数时)l??22???!??2?或
P2k?1?0??0 P2k?0????1?k?2k?1?!! (16.2.5d)
?2k?!!其中?2k?!!?2k??2k?2????6?4?2,?2k?1?!!??2k?1???2k?1????5?3?1现分别证明如下:
证明
(a) 令生成函数等式(16.1.13)中的x=+1,得
?1 ??Pl?l?rl (r<1)
1?rl?0?1 ??rl (r<1)
1?rl?0所以Pl?1?=1
(b) 令生成函数等式(16.1.13)中的x=-1,得
?1 ??Pl??1?rl (r<1)
1?rl?0?1l ????1?rl (r<1)
1?rl?0所以Pl??1????1?
l(a) 令生成函数等式(16.1.13)中的x=0,得 按二项式展开定理,有
11?r2??Pl?0?rl (r<1)
l?0? 36
?1?2?1r?2?1?12?1??3?r4k1?3?5????2k?1?22r????2?????2??2!?...???1?2kk!rk?...(r?1) 所以
Pk?2k?1?!!2k?1?0??0, P2k?0????1??2k?!!
16.2.3 Pl?x?的正交性及模N2l 1.正交性
?1?1Pn?x?Pl?x?dx?N2l?n,l (16.2.6)其中
?1?n?l?n,l??0;?n?l?
证明 因为
ddx??1?x2?P'l?x???l?l?1?Pl?x??0 ddx??1?x2?P'l?x???n?n?1?P?x??0 上述两式相减,并且在??1,1?区域上对x积分,得
?12'2'?1?Pn?x?ddx??1?x?Pl?x???Pd?l?x?dx??1?x?Pn?x????dx =?n?n?1??l?l?1???1?1Pl?x?Pn?x?dx
因为上面等式左边的积分值为
?1?x2??P''n?x?Pl?x??Pl?x?Pn?x??1?1?0
所以,当n?l有 ?1?1Pl?x?Pn?x?dx?0
当n?l时
?1P?x?P?2?1llx?dx?Nl?0
下面我们来计算这一常数值N2l
3. 模N2l
N21l=??1P2l?x?dx?22l?1 (16.2.7) 证明 将生成函数(16.1.13)自乘,且在??1,1?区间上对x积分,得
37
??1?2rx?r??11dx222????Pl?x?Pn?x?rn?ldx
n?0l?0???1?1 =另一方面
???n?0l?0?1?1rN?n,l??Nl2r2l
2l2ll?0???1?2rx?r??11dx222??1ln1?2rx?r22r??1?1
?11?r2?r2l?12 =ln????r2l
r1?rrl?0?2l?1?l?0?2l?1?所以
N12l=?1?Pl2?x?dx?2 2l?116.2.3 勒让德多项式的递推公式
在(16.2.1)中,我们对生成函数(16.1.13)求过r的导数,现在我们再来对它求x得导数,得
即
1?2rx?r?Gr?G?r,x? ?x1?2rx?r22?G???rG?r,x? ?x将上式的生成函数G?r,x?以级数G?r,x?形式来表示,即
'l' 1?2rx?r2P0'?x??rP1?x??????rPl?x????? 2l = rP0?x??r1P1?x??rP2?x??????rPl?x?????
?????l?归并r的同幂次项,得 所以
Pl?x??2xPl?1?x??Pl?2?x??Pl?1?x?=0
'''??P?x??2xP?x??P?x??P?x??r''l?1'l?2l?1l?0
今后约定,对于推导的递推公式适用于一切正整数l;但需注意的,当下角标取负整数时,需令它为零,例如今后l约定
P?1?x??0 P?2?x??0 等等
在上式中再作变换,令l?l?1,然后又抹去上l的角标一撇,于是得第一个递推公式
(1) Pl?x??Pl?1?x??2xPl?x??Pl?1?x?
''''' 38
将G?r,x?对r求导所得的递推公式(16.2.3)作为我们的第二个递推公式
(2)Pl?1?x??1??2l?1?xPl?x??lPl?1?x?? l?1将(2)式中的Pl?1?x?代入(1),得
''(3)lPl?x??xPl?x??Pl?1?x?
将(2)式中的Pl?1?x?代入(1)式,得
'(4)Pl'?1?x??xPl?x???l?1?Pl?x?
'从(1)(3)中消去xPl?x?,得 ''(5)?2l?1?Pl?x??Pl?1?x??Pl?1?x?
将(4)式中的l换成l-1,然后用(3)式消去Pl'?1?x?,得
'(6)x2?1Pl?x??lxPl?x??lPl?1?x?
??对(5)式,从l?0到l?n求和,得 (7)
??2l?1?P?x??P?x??P?x?
l'n?1'nl?0n ??
以上都是一些常用的递推公式,主要用来计算含有勒让德多项式的积分。下面举几个例子来说明它的应用。
例16.2.1
?1?1xPl?x?Pn?x?dx?? xPl?x?Pn?x?dx
{本题利用递推公式(2)较适宜,有 =
?1?111??12l?1??l?1?Pl?1?x??lPl?1?x??}Pn?x?dx
1l?11l????PxPxdx?Pl?1?x?Pn?x?dx =N?1n???1?12l?12l?12n??4n2?1;?当l?n?1时? =?2?n?1?;?当l?n?1时?
?2n?3??2n?1???0;(当l?n??1时)例16.2.2
?P?x?dx??
0l1利用递推公式(5)较适宜,有
?10Pl?x?dx?1?Pl?1?x??Pl?1?x??10 2l?139
=?1?Pl?1?0??Pl?1?0???1Pl?1?0? 2l?1l?1上式推导中最后一步利用了递推公式(2)。在递推公式(2)中令x=0得 Pll?1?0???l?1Pl?1?0? 往下计算,我们需要用到勒让德多项式特殊值(16.2.5d),最后得
?1;?当l?1? ?1?1 ;?当l?1?0Pl?x?dx??2?0;?当l?2???1?k?k,k?12k?1?!!?
?2k?2?!!;?当l?2k?1,k?1?例16.2.3 求证
?1?当l?1? ?1?12;3;?0xPdx??当l?1?l?x?0;?当l?2k?1,??k?1 2????1?k?1k?2?!!?2k,k?1?22k?k?1?!?k?1?;?当l!证明 本题适宜用递推公式(5),然后分部积分,得
?1x0xPl?x?dx?2l?1?Px??11l?1?x??Pl?1?0?12l?1?0?Pl?1?x??Pl?1?x??dx 再利用上题结果,得
P ?1?Pl?0?Pl?2?02l?1??l?2???l?? 然后,再用Pl?0?的值式(16.2.5d),即得所证。
例16.2.4 以下几个例子都是直接利用递推公式(2)的结果
x2?x?P?x??21
13P2?x??3P0?x?x3?x?x2?x?xP?21?31?x???x??3P2?x??3P0?x????25P3?x??5P1?x? x4?x?x3??x??2?5P3?8413?x??5P1?x????35P4?x??7P2?x??5P0?x?
利用公式(16.1.8)可以证明:若f?x?是xk幂的多项式,且最高幂次为n。因为 ?1?1xnPl?x?dx?0 (n 所以的展开式为 f(x)??nclPl?x? l?0例如,f?x?=x2则 x2?coP0?x??c1P1?x??c2P2?x? 40 百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库傅里叶级数和傅里叶变换(8)在线全文阅读。
相关推荐: