高考数学总复习专题训练 概率统计与排列组合二项式定理
安徽理
(12)设(x??)???a??a?x?a?x??La??x??,则 . 11(12)C20【命题意图】本题考查二项展开式.难度中等.
【解析】
??a1?0??1C(0?2111,)?C?1111011a11?C(?1)?C212121,
??所
?以
??a???a??C?C??????. ?C???C??????????(20)(本小题满分13分)
工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果有一个人10分钟内不能完成任务则撤出,再派下一个人。现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别
p?,p?,p?p?,p?,p?,假设p?,p?,p?互不相等,且假定各人能否完成任务的事件相互独立.
(Ⅰ)如果按甲在先,乙次之,丙最后的顺序派人,求任务能被完成的概率。若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?
(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q?,q?,q?,其中
q?,q?,q?是p?,p?,p?的一个排列,求所需派出人员数目X的分布列和均值(数字期望)
EX;
(Ⅲ)假定??p??p??p?,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小。
(20)(本小题满分13分)本题考查相互独立事件的概率计算,考查离散型随机变量及其分布列、均值等基本知识,考查在复杂情境下处理问题的能力以及抽象概括能力、合情推理与演绎推理,分类读者论论思想,应用意识与创新意识. 解:(I)无论以怎样的顺序派出人员,任务不能被完成的概率都是
(1?p1)(1?p2)(1?p3),所以任务能被完成的概率与三个被派出的先后顺序无关,并等于
1?(1?p1)(1?p2)(1?p3)?p1?p2?p3?p1p2?p2p3?p3p1?p1p2p3.
(II)当依次派出的三个人各自完成任务的概率分别为q1,q2,q3时,随机变量X的分布列为
1
X P
1 2 3 q1 (1?q1)q2 (1?q1)(1?q2) 所需派出的人员数目的均值(数学期望)EX是
EX?q1?2(1?q1)q2?3(1?q1)(1?q2)?3?2q1?q2?q1q2.
(III)(方法一)由(II)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,
EX?3?2p1?p2?p1p2.
根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于p1,p2,p3的任意排列q1,q2,q3,都有
3?2q1?q2?q1q2?3?2p1?p2?p1p2,……………………(*)
事实上,??(3?2q1?q2?q1q2)?(3?2p1?p2?p1p2)
?2(p1?q1)?(p2?q2)?p1p2?q1q2?2(p1?q1)?(p2?q2)?(p1?q1)p2?q1(p2?q2)
?(2?p2)(p1?q1)?(1?q1)((p2?q2)?(1?q1)[(p1?p2)?(q1?q2)]?0.
即(*)成立.
(方法二)(i)可将(II)中所求的EX改写为3?(q1?q2)?q1q2?q1,若交换前两人
的派出顺序,则变为3?(q1?q2)?q1q2?q1,.由此可见,当q2?q1时,交换前两人的派出顺序可减小均值.
(ii)也可将(II)中所求的EX改写为3?2q1?q2?q1q2,或交换后两人的派出顺序,
则变为3?2q1?q3?q1q3.由此可见,若保持第一个派出的人选不变,当q3?q2时,交换后两人的派出顺序也可减小均值.
综合(i)(ii)可知,当(q1,q2,q3)?(p1,p2,p3)时,EX达到最小. 即完成任务概率
大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的. 安徽文(9) 从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于 (A)
???? (B) (C) (D)
?????(9)D【命题意图】本题考查古典概型的概率问题.属中等偏难题.
【解析】通过画树状图可知从正六边形的6个顶点中随机选择4个顶点,以它们作为顶点的四边形共有15个,其中能构成矩形3个,所以是矩形的概率为
31?.故选D. 1552
(20)(本小题满分10分)
某地最近十年粮食需求量逐年上升,下表是部分统计数据:
年份 需求量(万吨) 2002 236 2004 246 2006 257 2008 276 2010 286 (Ⅰ)利用所给数据求年需求量与年份之间的回归直线方程y?bx?a;
(Ⅱ)利用(Ⅰ)中所求出的直线方程预测该地2012年的粮食需求量。 温馨提示:答题前请仔细阅读卷首所给的计算公式及说明. (20)(本小题满分10分)本题考查回归分析的基本思想及其初步应用,回归直线的意义和求法,数据处理的基本方法和能力,考查运用统计知识解决简单实际应用问题的能力. 解:(I)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下: 年份—2006 需求量—257 -4 -21 -2 -11 0 0 2 19 4 29 对预处理后的数据,容易算得
x?0,y?3.2,(?4)?(?21)?(?2)?(?11)?2?19?4?29260b???6.5, 2222404?2?2?4a?y?bx?3.2.由上述计算结果,知所求回归直线方程为
?
y?257?b(x?2006)?a?6.5(x?2006)?3.2, )?260.2. ①即y?6.5(x?2006
(II)利用直线方程①,可预测2012年的粮食需求量为
?6.5(2012?2006)?260.2?6.5?6?260.2?299.2(万吨)≈300(万吨).
北京理
12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有______个(用数字作答)
【解析】个数为2?2?14。
17.以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中以X表示。
4
(1)如果X?8,求乙组同学植树棵数的平均数和方差;
3
(2)如果X?9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望。
2(注:方差s?1[(x1?x)2?(x2?x)2?n?(xn?x)2],其中x为x1,x2,?,xn的平
均数) (17)(共13分)
解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为
x?8?8?9?1035?;
44方差为
13535353511s2?[(8?)2?(8?)2?(9?)2?(10?)2]?.
4444416(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组
同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=同理可得P(Y?18)?21?. 1681111;P(Y?19)?;P(Y?20)?;P(Y?21)?. 444818 19 20 21 所以随机变量Y的分布列为: Y P 17 1 81414141 4181 41 41 8EY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×
=19 北京文
7.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储
时间为
18x天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与8仓储费用之和最小,每批应生产产品 B A.60件 B.80件 C.100件 D.120件 16.(本小题共13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
4
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率. (注:方差s?2
1[(x1?x)2?(x2?x)2??(xn?x)2],其中x为x1,x2,?,xn的平均n数) (16)(共13分)
解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为
8?8?9?1035?;方
44135353511s2?[(8?)2?(9?)2?(10?)2]?.
444416x?差为
(Ⅱ)记甲组四名同学为A1,A2,A3,A4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B1,B2,B3,B4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:
(A1,B1),(A1,B2),(A1,B3),(A1,B4), (A2,B1),(A2,B2),(A2,B3),(A2,B4), (A3,B1),(A2,B2),(A3,B3),(A1,B4), (A4,B1),(A4,B2),(A4,B3),(A4,B4),
用C表示:“选出的两名同学的植树总棵数为19”这一事件,则C中的结果有4个,它们是:(A1,B4),(A2,B4),(A3,B2),(A4,B2),故所求概率为P(C)?41?. 164福建理6.(1+2x)3的展开式中,x2的系数等于
B A.80 B.40 C.20 D.10
13.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_______。
3 519.(本小题满分13分)
某产品按行业生产标准分成8个等级,等级系数X依次为1,2,??,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准
(I)已知甲厂产品的等级系数X1的概率分布列如下所示:
x1 P 5 0.4 6 a 7 b 8 0.1 且X1的数字期望EX1=6,求a,b的值;
(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级
系数组成一个样本,数据如下:
3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3
5
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库[新人教]高考数学总复习专题训练概率统计与排列组合二项式定理在线全文阅读。
相关推荐: