尽情玩耍表示抗议,结果,这学年他的成绩又是倒数第一名。
新学年开始,班级调来了一位叫陈玉峰的老师。他发现这小孩挺聪明,就是贪玩,还有受委屈的情绪,就找他谈话:“父母用劳动的血汗供你读书,你却不用功念书,这样做对得起父母吗?”老师还启发他说:“个人的前途要自己去争取。我看你的资质不差,又能吃苦,只要努力学习,一定会成为有用的人材??”陈老师的话触动了他。由此他渐渐振奋起来,决心做一个有所作为的人。 从此他发愤读书。为了看懂《东周列国志》,他步行几十里山路,向人家借来《康熙字典》。假日,他回家照样去放牛,骑在牛背上一首一首地背诵《唐诗三百首》。这学年结束,他的成绩名列全班第一。此后,苏步青在求学期间,每次考试都得第一名。
1914年,苏步青以优异的成绩,考进旧四年制的浙江省第十中学,也就是现今温州一中的前身。这时,他已能把“左传”背熟。由于他博览群书,在同学中获得了“文人”的雅号。苏步青自己也暗下决心,将来当个历史学家、文学家。 在这艰难岁月,苏步青的研究继续突飞猛进,取得了一系列的成果。这段时期里,苏步青主要的贡献在射影微分几何学方面。他用富有几何意味的构图来建立一般射影曲线的基本理论。1954年出版的《射影曲线概论》一书,综述了这一理论。苏步青对于射影曲面的研究是非常深入的,内容很丰富,不仅发展了一般的理论,而且深入地研究了许多重要类型的曲面和共轭网,得出非常有意义的几何构图。特别在闭拉普拉斯序列和构图(T4)方面。苏步青研究了周期为4的拉普拉斯序列。他研究一种有特殊意义的情况,要求它们的对角线构成一个可分层偶。这种序列被称为“苏链”。1964年出版的专著《射影曲面概论》,就是这方面的总结。
笛卡尔说过:“数学的结果如果能用几何图形表示出来,它就能深深地印到人们的脑海里去。”微分几何是以数学分析为工具研究空间形式性质,特别是研究光滑曲线、曲面性质的数学分科,尤其需要做到这一点。但过去的研究停留在公式推导上,看不出结果的几何构造。苏步青匠心独运,把研究结果表示为引人入胜的几何构图,开辟了微分几何研究的新生面,建立了一系列新理论。
就在这段时期内,苏步青的第一本专著《微分几何学》于1948年由正中书局出版。这是他唯一在旧中国出版的一本书。在浙江大学任教期间,苏步青讲授微分几何学前后达16年之久。《微分几何学》这本书是他长期从事教学的结晶。他既担任教学,又从事科学研究。为了备好课,他总是把最新的研究成果写进教材,比如,1928年世界上的某些新成果,已被写进1931年的讲义中去。1947年,陈省身看了这部讲义稿,就称赞他的工作很有意义,还写了《微分几何学》英文介绍,其中谈到:这是一本少有的微分几何教材,它对培养数学人才必将发挥很大的作用。1985年,有几位美籍华裔科学家到上海,曾谈起他们在台湾上学时,用过苏步青的《微分几何学》当教材,对他们进入微分几何领域很起作用。前几年,国家教委几何拓扑教材编审组决定再版该书,由文言文改为语体文,将旧符号改为现代通用的符号,于1988年出版了新版。
基础科学与应用科学研究相结合,使苏步青在数学研究方面前进了一大步。他深信,数学研究为建设服务,坚持数年必有成效。到了1983年,一项专用于设计汽车车身外形的计算机辅助设计(CAD)系统,又通过了专家的技术鉴定。 最近几年,他们又把计算几何的理论和方法,应用到开发建筑、服装、内燃机等行业的计算机辅助设计系统中去,取得了成功。这种系统通过电脑,把那些款式新颖的服装、美丽多姿的建筑物、形状复杂的机械零件迅速地在电脑屏幕上
6
显示出来,设计师可以随心所欲地加以修改,从中取出最佳的设计方案。他和刘鼎元合写的专著《计算几何》,被评为全国优秀科技图书,并译成英文在美国出版,获得国际声誉。他们的研究成果,获得国家科技进步奖。 苏步青对我国数学和教育事业的贡献是多方面的。他创办了复旦大学数学研究所,并担任所长多年。他创办了国际性数学杂志《数学年刊》,担任主编,使这杂志争取到很好的评价。特别应该指出的是:在1977年邓小平召集的座谈会上,苏步青提出了在教育战线拨乱反正的许多建议,他的恢复研究生制度的倡议,很快得到实现,在全国产生重大影响。
阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古,著名的机械制造师,终生研究几何。阿基米德在叙拉古陷落(公元前212年)时被罗马兵所杀的,终年75岁。
阿基米德的父亲是位数学家兼天文学家。阿基米德从小受良好的家庭教养,年仅11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称―智慧之都‖的名城里,阿基米德博览群书,汲取了许多知识,并且做了欧几里得学生的门生。他潜心钻研《几何原本》,对欧几里得数学的进一步发展作出了一定的贡献。回到叙拉古以后仍然和他们保持密切的联系,他的许多学术成果就是通过和亚历山大的学者通信往来保存下来的。后人对阿基米德给予极高的评价,尊阿基米德为―数学之神‖。
关于阿基米德,有一段传诵千古的逸事。相传叙拉古的国王为了谢神,决定建造一个华贵的神龛,内装一个纯金的王冠。制作的金匠如期完成了任务,等着领赏。这时国王得到密告,说金匠偷去一部分金子,以等重的银子掺入。国王甚为愤怒,但又无法判断是否确有其事。便请足智多谋的阿基米德来鉴定一下,一时间他也想不出好办法来。正在苦闷之际,他到公共浴室去洗澡,当身体浸入装满水的浴盆的时候,水漫溢到盆外,而身体顿觉发轻。为此,他豁然开朗,领悟到不同质料的物体,虽然重量相同,但因体积不同,排去的水必不相等.根据这一道理,不仅可以判断王冠是否掺有杂质,而且通过计算还可知道工匠偷去黄金的份量。这一发现非同小可,阿基米德高兴得跳了起来,立刻赤身奔回家中准备实验,口中不断大呼―我找到了‖。
事后,阿基米德又经过仔细的实验和反复思考,将其经验上升为理论,他终于发现了流体静力学的基本原理——阿基米德原理:物体在流体中减轻的重量,等于它所排去流体的重量。后来这一原理总结在他的名著《论浮体》中。
阿基米德在建立了杠杆定律(若两物体与支点的距离反比于其重量,则杠杆平衡)之后,解决了―用给定的力去移动任何给定的重物‖的问题,曾发出过这样的豪言壮语:―给我一个立足点,我就可以移动地球!‖
后来阿基米德成为兼数学家与力学家于一身的伟大学者,并且享有―力学之父‖的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演绎方法推出许多杠杆命题,给出严格的证明,其中就有著名的―阿基米德原理‖。他在数学上也有着极为光辉灿烂的成就。阿基米德的著作流传至今的有:《论球与圆柱》、《圆的度量》、《劈锥曲面与回转椭圆体》、《论螺线》、《平面图形的平衡或其重心》、《数沙器》、《抛物线图形求积法》、《论浮体》、《引理集》、《群
7
牛问题》等十来部,它们多数是几何著作。这对于推动数学的发展,起着决定性的作用。
历史上有的数学家勇于开辟新的园地,而缺乏缜密的推理,有的数学家偏重于逻辑证明,而对新领域的开拓却徘徊不前。阿基米德则兼有二者之长,他将惊人的独创与严格的论证融为一体,更善于将计算技巧与逻辑分析结合起来。正确地注意理论与实际的联系,常常通过实践直观地洞察到事物的本质,然后运用逻辑方法使经验上升为理论(如浮力问题),再用理论去指导实际工作(如发明抗敌器械)。
阿基米德不仅是一位杰出的科学家,而且一位伟大的爱国主义者。在他的一生中,最悲壮、最惊心动魄的一幕是他以古稀之龄,投身于反侵略战争,他运用科学知识,制作抗敌器械,为了拯救自己的祖国,曾竭尽心智,力挽狂澜,给侵略者以沉重的打击,最后为国捐躯。这位独步千古的科学家,他的爱国精神和爱科学的精神同样为万世所景仰。
他还将欧几里得提出的趋近观念作了有效的运用,他提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下的趋近于圆周长。他先用六边形,以后逐次边数加倍,到了九十六边形,求得π的估计值介于3.14163和3.14286之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他最得意的杰作是导出圆柱内切球体的体积是圆柱体积的三分之二。这定理就刻在他的墓碑上,也成为他名垂千古的一大注记。
最后,我们来看看阿基米德真的能移动地球吗?下面不妨作一个简单的计算,那时人们并不知道地球有多重,现在知道地球质量是6×1027克。假想用杠杆来举起地球,加60公斤(6×104克)的力,那么力臂应该是重臂的 6×1027÷6×104=1023倍。要举起地球10– 4毫米,力臂的一端应走过1013公里以上。每天24小时以短跑的速度走过这个距离,至少要3000万年!换句话说,即使略去杠杆本身的重量不计,阿基米德用尽毕生的力量,也休想移动地球分毫。不过这位伟大的古代力学家,只因为不知道地球的大小,以致作出错误的判断,这是可以谅解的。
埃尔米特
埃尔米特(1822--1901)法国数学家。曾任法兰西学院、巴黎高等师范学校、巴黎大学教授。法兰西科学院院士。十九世纪最伟大的代数几何学家。他在十九世纪数学中占有崇高的地位,他是继高斯、柯西、雅可比和狄利克雷之后最重要的分析学家之一。
埃尔米特1822年12月24日生于法国洛林地区的迪约兹,他出生时右腿就有残疾,因此终生腿瘸,不得不拄着手杖行走。他从父母那里接受了启蒙教育。埃尔米特进学校学习后,他从小就是个问题学生,上课时老爱找老师辩论,特别是一些基本的问题。他尤其痛恨考试,他的数学考得特别差,主要原因是他的数学特别好。埃尔米特花许多时间去看数学大师如牛顿、高斯的原著,他认为在那里才能找到数学的美,在那里才能看到数学兴奋的源头。中学毕业后,埃尔米特
8
到巴黎继续他的学业。1840年转入路易大帝学院。在校学习期间,他并不特别认真地准备考试课程,而是热衷于阅读各种书籍。他十分认真地研读了高斯的名著《算术研究》,并真正掌握了它。他还阅读并理解了拉格朗日关于代数方程代数解法的著述。他后来曾说过:“正是从这两部著作中,我学会了代数”。
他的头两篇论文发表于1842年法国的《新数学年刊》上,其中一篇“对五次方程代数解法的探讨”的论文中,表现出了他非凡的创造性,他在尚不知道阿贝尔等著作的情况下,试图证明五次方程根式解的不可能性。
此后他已经了解到柯西和刘维尔等人关于一般函数的工作,而且也熟知雅可比关于椭圆函数和超椭圆函数的工作。埃尔米特把上述两个领域结合起来,表现出高度的数学才能,他在这方面的初步工作,确定了他在数学界的地位。埃尔米特与刘维尔等其他数学家的通信,产生了巨大的科学影响。埃尔米特的数学成就使他受到学术界的重视,1848年他被任命为巴黎综合工科学校的入学考试委员。1856年他当选为巴黎科学院院士。
埃尔米特是一位热心的数学传播者,他经常通过书信、便条以及讲演无保留地向数学界提供他的知识、想法乃至创造性的思维火花。例如,他与斯蒂尔切斯两人从1882年到1894年间至少写过432封信。只要认真阅读埃尔米特的著作,就会发现,他提供了许多可以作为别人发现的序幕的例子,他的数学传播工作极大地促进了数学的发展。
1862年,他成为巴黎综合工科学校的讲师。1867年,他担任该校的分析学教授职务,同时他还成为巴黎理学院的教授,先教代数学,后来教分析学。他的分析学讲义在国内外都享有盛名。1876年,埃尔米特辞去他在巴黎综合工科学校的职务,1897年辞去在巴黎理学院的职务而退休。他是许多国家的科学院和学会的名誉成员,获得过许多勋章。1892年他70岁生日时,欧洲科学界一起向他致意祝贺。据说,这是一位数学家很少能得到的殊荣。
他在数学分析、代数以及数论等领域做出了多方面的贡献。为了表达对这位数学大师的尊敬和纪念,人们以他的名字作了这样一些命名:埃尔米特矩阵,埃尔米特型,埃尔米特多项式,埃尔米特双曲空间,埃尔米特插值,埃尔米特核,埃尔米特算子,埃尔米特流形等,同时这些命名也反映了埃尔米特的多方面的数学成就。
达朗贝尔
达朗贝尔(1717-1783)——法国数学家、物理学家、天文学家、启蒙思想家与哲学家。马萨林学院毕业。当选为法兰西科学院院士。对偏微分方程有贡献。他所提出的力学原理后被称为“达朗贝尔原理”。曾任《百科全书》副主编。一生研究了大量课题,完成了涉及多个科学领域的论文和专著,其中最著名的有8卷巨著《数学手册》、力学专著《动力学》、23卷的《文集》、《百科全书》的序言等等。他的很多研究成果记载于《宇宙体系的几个要点研究》中。
达朗贝尔少年时代进入一个教会学校,主要学习古典文学、修辞学和数学。他对数学特别有兴趣,这为后来成为著名数理科学家打下了基础。
达朗贝尔没有受过正规的大学教育,全靠自学掌握了牛顿和当代著名数理科学家们的著作。1739年7月,他完成第一篇学术论文,以后两年内又向巴黎科学院提交了5篇学术报告,内容是研究微分方程的积分方法和物体在介质内的阻
9
尼运动。达朗贝尔刚进科学院时任天文学助理院士,1746年被提为数学副院士;1754年被提为终身院士。
1750年以后,他停止了自己的科学研究,投身到了具有里程碑性质的法国启蒙运动中去。他参与了百科全书的编辑和出版,是法国百科全书派的主要首领。在百科全书的序言中,达朗贝尔表达了自己坚持唯物主义观点、正确分析科学问题的思想。在这一段时间之内,达朗贝尔还在心理学、哲学、音乐、法学、宗教和文学等方面都发表了一些作品。
达朗贝尔的研究工作和论文写作都以快速闻名。他进入科学院后,就以克莱洛作为竞争对手,克莱洛研究的每一个课题,达朗贝尔几乎都要加以研究,而且尽快发表。多数情况下,达朗贝尔胜过了克莱洛,这种竞争一直到克莱洛去世为止。
1754年,他被提升为法国科学院的终身秘书。欧洲很多国家的科学院都聘请他担任国外院士。
1783年,达朗贝尔在法国巴黎病逝。由于他之前反对宗教,巴黎市政府拒绝为他举行葬礼。所以当这位科学巨匠离开这个世界的时候,既没有隆重的葬礼、也没有缅怀的追悼,只有他一个人被安静地埋葬在巴黎市郊的墓地里。
自牛顿和莱布尼茨发现微积分后,数学发展到一个新阶段。欧洲大陆数学家继续在分析方法上不断探索而迅速发展,进入数学分析的开拓时期。达朗贝尔是重要的开拓者之一,其成就仅次于欧拉、拉格朗日、拉普拉斯和伯努利。
他还提出了一种判别级数绝对收敛的方法——达朗贝尔判别法,即直到现在还使用的比值判别法;他同时是三角级数理论的奠基人。达朗贝尔也为偏微分方程的出现做出了巨大的贡献。1746年他发表了论文《张紧的弦振动所形成的曲线研究》,在这篇论文里,他首先提出了波动方程,并于1750年证明了它们的函数关系。1763年,他进一步讨论了不均匀弦的振动,提出广义的波动方程。另外,达朗贝尔在复数的性质、概率论等方面都有所研究,而且他还很早就证明了代数的基本定理,虽然他的证明还不完全。达朗贝尔在数学领域的各个方面都有所建树。达朗贝尔还是个多产的科学家,他对力学、数学和天文学的大量课题进行了研究;论文和专著很多,还有大量学术通信。
笛卡儿
笛卡儿(1596 – 1650)法国哲学家、物理学家、数学家、生理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了以数学为基础,演绎为核心的方法论,对后世的哲学、数学和自然科学发展起到了巨大的作用。
1596年3月21日笛卡儿生于法国都兰城。刚一岁时母亲就去世,但母亲给笛卡儿留下一笔遗产,使他在以后的一生中有可靠的经济保障,得以从事自己喜爱的工作。丧母后他由一位保姆照料,由于幼年体弱,因此他养成了清晨卧床长时间静思的习惯,他对周围的世界充满好奇心,几乎终生不变。他的不少伟大发现都是在床上得到的。有个故事传说他盯着空中飞的苍蝇,于是他就想到苍蝇在每一时刻的位置可以用苍蝇所在的位置处相交的三个互相垂直的平面所确定。这和二维平面上的情况类似,每一点都可以由在这点相交的两条互相垂直的直线来确定。
10
百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库著名数学家简介(2)在线全文阅读。
相关推荐: