著名数学家简介(4)

来源:网络收集 时间:2025-06-21 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

维和逻辑表达能力的严格训练,尤其是解决问题的训练。

姜立夫的辛勤耕耘,结出了丰硕的成果。仅在他早年的学生中就出现了刘晋年、江泽涵、申又枨、吴太任、陈省身、孙本旺等优秀数学家。作为中国现代高等数学教育事业的重要开拓者,姜立夫的功绩是不可磨灭的。

姜立夫另一项倾注心血较多,持续时间也较长的工作是数学名词的审定。事实上,由姜立夫领导审定的,虽然只限于纯粹数学方面最基本的名词,但已构成今日整个数学名词的基础。

姜立夫深知,教学质量主要决定于教师水平;而在青年中发现优秀人才,使之负担重任,在工作中成长,尤其重要。姜立夫对苏步青的大力推荐正是表现这一观点的典型事例。

卡当

卡当(1501—1576)意大利数学家、医生,并在医学、哲学、物理学和星占学中都有一定成就。1545年著《大术》首先介绍了从塔尔塔利亚那里得来的三次方程的解法,他和学生费拉里发现的四次方程的解法。

卡当1501年9月24日生于意大利帕维亚。他的童年相当不幸,这就造成了他个性孤僻,自负,并且往往在言谈中,表现得冷漠无情。他为了逃避穷困、病痛、毁谤和不公平的待遇,曾在25年之中,每天玩骰子,并天天玩棋达40年之久。

青年时代,他致力于研究数学、物理。从帕维亚大学医学院毕业后,在波隆纳和米兰行医并教授他人医术,成为全欧有名的医生。这期间,他也受聘在意大利的多所大学,担任数学讲座教师。

卡当的坎坷经历使他的性格颇为奇特,因而常常被描述为科学史上的怪人。他在数学、哲学、物理学和医学中都有一定成就,同时也一直醉心于占星术和赌博的研究。卡当被誉为百科全书式的学者,他的著作涵盖了数学、天文学、占星学、物理学、医学以及关于道德方面的语录。一生共写了各种类型的文章、书籍200多种.现存的材料就有约7000页。

他智力超群,但性情孤僻,职业动荡多变,著述鱼龙混杂。除了作为正式职业的著名医生、医学教授、占星术士外,就他的贡献而言,人们也常把他称为数学家、哲学家、物理学家,或者笼统地称之为科学家。

卡当的数学贡献表现在他对算术和代数的研究,1539年首次出版了他的两本算术演讲书,其中较重要的一部是《算术实践与个体测量》。书中他主要用数值计算来解决实际问题,在一些计算方法、代数变换中显示出较高技巧。当时的代数没有符号,仅靠文字叙述来表示解题过程,称为“文词代数”。对于高于二次的代数方程,一般是没有解决办法的。卡当在书中列专题论述了多种方程的解法,甚至求得一些特殊三次方程的解。例如:方程6x3- 4x2 = 34x + 24,方程两边同时加上6x3 + 20x2,合并后得: 4x2(3x+4) = (2x2+4x+6)(3x+4),两边同除以3x+4,则由二次方程解得原方程的一个正根x=3。按当时的习惯,一般不承认方程有负根,解出一个正根就认为是解完了方程。

卡当最重要的数学著作是1545年出版的《大术》。该书系统给出代数学中的许多新概念和新方法。例如:三、四次代数方程的一般解法;书中首次出现使用

16

符号的雏形。他对三次及四次方程式提出了系统性的解法,这是一个非常重要的成就。他确认高于一次的代数方程多于一个根;已知方程的一个根将原方程降阶;方程的根与系数间的某些关系;利用反复实施代换的方法求得数值方程的近似解;解方程中虚根的使用等等。

刘徽

刘徽(约公元三世纪)山东临淄人,魏晋期间伟大的数学家,中国古典数学理论的奠基者之一。

刘徽在公元263年注《九章算术》,他全面证明了《九章算术》的方法和公式,指出并纠正了其中的错误,在数学方法和数学理论上作出了杰出的贡献。

《九章算术》于公元前一世纪成书,至刘徽时代已300余年。《九章算术》包括方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章,奠定了中国古算的基本框架;书中提出了上百个公式、解法,有完整的分数四则运算法则,比例和比例分配算法,若干面积、体积公式,开平方、开立方程序,盈不足算法,方程术即线性方程组解法,正负数加减法则,解勾股形公式和简单的测望问题算法,其中许多成就在世界上处于领先地位,形成了中国古算以计算为中心的特点;内有246个应用题,体现了中国古算密切联系实际的风格。

刘徽所做的工作并不是只停留在对《九章算术》的注释上,而是更上一层楼,在注释的同时提出了许多创造性见解。例如为阐述几何命题,证明几何定理,创造了“以盈补虚法”,并且纠正了其中的一些错误。

他同时又撰有《重差》一卷,《重差》后来印成单行本改称为《海岛算经》。在注文中,刘徽用语言来讲清道理,用图形来解释问题﹝析理以辞,解体用图﹞。

刘徽创造性地运用极限思想证明了圆面积公式及提出了计算圆周率的方法。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形??,割得越细,正多边形面积和圆面积之差越小,用他的原话说是―割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。‖他计算了3072边形面积并验证了这个值.刘徽提出的计算圆周率的科学方法,奠定了此后千余年中国圆周率计算在世界上的领先地位。

刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;并在中国数学史上第一次提出了“不定方程问题”。

他还建立了等差级数前n项和公式;提出并定义了许多数学概念:如幂(面积);方程(线性方程组);正负数等等。刘徽还提出了许多公认正确的判断作为证明的前提。他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注释《九章算术》所运用的数学知识实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。

牛顿

17

牛顿(1643—1727)英国物理学家、数学家与天文学家。剑桥大学教授,英国皇家学会会员、会长。经典力学基础的牛顿运动定律的建立者以及万有定律的发现者。在数学上,提出“流数法”和莱布尼兹同为微积分的创始人,并建立了二项式定理。著有《自然哲学的数学原理》等。

牛顿1643年1月4日出生于英格兰林肯州的一个农民家庭,出世时父亲已病故,生活艰难,幼年由外祖母抚养。少年牛顿不是神童,在校学习成绩平平。但他喜欢读书,从中学起就有作读书笔记的习惯。中学时代的牛顿还酷爱制作玩具,他所制作的玩具实际上是各种机械模型,包括风车、木钟、日晷以及折叠式提灯等等,同时他还对绘画有着非凡的才华。

1661年,19岁的牛顿,考入了著名的剑桥大学。在学习期间,牛顿表现出他具有深邃的观察力、敏锐的理解力,并进行近代自然科学的研究。1665年,牛顿大学毕业,获得学士学位。在家乡避瘟疫期间,牛顿在数学上的研究很大程度是依靠自学,他专心致志地思考数学、物理学和天文学问题,思想火山积聚多年的活力,终于爆发了,智慧的洪流,滚滚奔腾。短短的18个月,他就孕育成形了:流数术(微积分)、万有引力定律和光学分析的基本思想。牛顿于1684年通过计算彻底解决了1666年发现的万有引力。1687年,他45岁时完成了人类科学史上少有科学巨著《自然哲学的数学原理》,继承了开普勒、伽里略,用数学方法建立起完整的经典力学体系,轰动了全世界。

牛顿对数学的贡献,最突出的有三项,即作为特殊形式的微积分的“流数术”,二项式定理及“广义的算术”(代数学)。

牛顿为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。从牛顿始创微积分的时间来说,比现代微积分的创始人德国的数学家莱布尼兹大约早10年,但从正式公开发表的时间来说,牛顿却比莱布尼兹要晚。事实上,他们二人是各自独立地建立了微积分。

牛顿研究得出的二项式级数展开式是研究级数论、函数论、数学分析、方程理论的有力工具。

《广义算术》,则总结了符号代数学的成果,推动了初等数学的进一步发展。这本书关于方程论也有些突出的见解。其中比较著名的是“牛顿幂和公式”。

牛顿的数学贡献还远不止这些,他在解析几何中的成就也是令人瞩目的。他的“一般曲线直径”理论,引起了解析几何界的广泛重视。

除了微积分、代数与几何以外,牛顿的数学工作还涉及数值分析、概率论和初等数论等众多的领域。还有牛顿插值公式,最速降落线问题的解答。现今任何一本数值分析教程都不能不提到牛顿的名字——牛顿—高斯公式、牛顿—斯特林公式、牛顿—拉弗森公式??,这反映了牛顿对该领域广泛而卓越的贡献。

1727年3月31日,牛顿因患肺炎与痛风症在伦敦溘然辞世。在牛顿的全部科学贡献中,数学成就占有突出的地位,这不仅是因为这些成就开拓了崭新的近代数学,而且还因为牛顿正是依靠他所创立的数学方法,实现了自然科学的一次巨大综合而开拓了近代科学,牛顿在其它科学领域的研究,毫不逊色于在数学上的贡献。

18

帕斯卡

帕斯卡(1623-1662)法国数学家、物理学家、数学家、哲学家和散文家。早年提出圆锥曲线内接六边形其三对边的交点为共线的定理(帕斯卡定理)。研究了代数中二项式展开的系数规律(帕斯卡三角形);对概率论的研究也有一定的贡献;曾设计和创造了一种加法器;还提出了密闭流体能传递压强的定律(帕斯卡定律)。

1623年6月19日帕斯卡生于法国多姆山省的克莱蒙费朗。帕斯卡很小时母亲就去世了,以后全靠在税务局工作的父亲教育他及姐妹们。其父是一个数学爱好者,经常和一些懂数学的人交往。可是他却认为数学对小孩子是有害且会伤脑筋的,小孩子应该在十五、六岁时才学习数学,在这之前应该学一些拉丁文或希腊文。因此在帕斯卡小时候,父亲从来不教他学习数学,只是教他一些语文和历史。而且帕斯卡的身体也不太强壮,父亲更不敢让他接触到数学。帕斯卡在十二岁时,偶然看到父亲在读几何书。他好奇地问几何学是什么?父亲为了不想让他知道太多,只是大约讲几何研究的是图形,如三角形、正方形和圆的性质,用处就是教人画图时能作出正确美观的图。父亲很小心的把自己的数学书都收藏好,怕被帕斯卡拿去翻看。可是帕斯卡从小就对数学产生了浓厚的兴趣,他根据父亲讲的一些简单的几何知识,自己独立对几何学研究。当他将发现:“任何三角形的三个内角和是一百八十度”的结果告诉父亲时,父亲是惊喜交集,竟然哭起来。父亲于是搬出了欧几里得的《几何原本》给帕斯卡看。这时帕斯卡才开始接触到数学书籍。1631年帕斯卡随家移居巴黎后,并在16岁时就参加了巴黎数学家和物理学家小组(巴黎科学院的前身)。

他的数学才能显得很早熟,在十三岁的时候就发现了所谓“帕斯卡三角形”(我国称“杨辉三角形”,即二项式系数的三角形排列法)。还不到十六岁他发现了射影几何学的一个基本原理:“圆锥曲线内接六边形其三对边的交点共线”。帕斯卡定理是射影几何的一个重要定理。在他十七岁时利用这定理写出将近四百多页关于圆锥曲线定理的论文,《圆锥曲线之几何》一书。年仅17岁的帕斯卡,在数学界崭露头角,受到了笛卡儿的高度赞赏。

图灵

英艾伦·图灵(1912--1954)英国数学家、逻辑学家。剑桥大学毕业,美国普林斯顿大学哲学博士。计算机理论和人工智能的奠基人之一。1936年首次设计一种理想的计算机(后称为图灵机)。

图灵出生于英国伦敦,他少年时代就表现出独特的直觉创造能力和对数学的爱好。幼时他受到良好的中等教育,很早他就已经表现出对数学和自然科学的偏好,在中学时他曾获得过国王爱德华六世数学金盾奖章。1931年图灵进入著名的剑桥大学专修数学。特别在升入大学三年级后,他的才华如同积蕴的火山喷发,如同汹涌的海浪奔腾,真可谓:不鸣则已,一鸣惊人。他的杰出才能赢得了师友们的称赞赏识,毕业后留校当了助教。

1936年9月,图灵应邀到美国普林斯顿高级研究院学习。在美期间,他对

19

群论作了一些研究。这位年仅24岁的青年教师发表了著名的图灵机设想。所谓“图灵机”,指的是一台理想的机器,它由三部分构成:一台控制机,一条带子和一个读写头。带子上分成了许多小格,每一小格存一个符号,读写头沿着纸带移动,从而向控制机传递信息。这台理想机器虽然极其简单,但却能完成一切计算机的功能。1937年,图灵的著作出版了,其中就有关于图灵机的论文,引起了学术界的广泛注意。1938年他取得物理学博士学位,并担任冯·诺伊曼博士的助手。

1939年图灵奉召到英国外交部通讯部所属的密码学校从事破译工作,他领导的数学家,语言学家和计算人员共同研制了一种快速计算机,能高速分析密码——各种可能的组合。在图灵的理想计算机的思想指导下,1943年,世界上第一台数字式专用“巨人”电子计算机的研制成功,专门用于破译密码,也为二次大战的最后胜利建立了不朽功勋。图灵因此被授予大英帝国勋章。1945年第二次世界大战结束后,图灵退伍进了英国国家物理研究所,他继续致力于研制大型电子计算机,写出了计算机总体设计方案,包含了仿真系统、子程序和子程序库、错误自检系统、机器自动编译程序等。图灵在机器智能方面做出了许多开创性的工作。并论述了智能机器的可能性,以他特有的理论彻底性对包括智能计算机在内的所有机器作了严密的分类,把数学计算机分为“有组织的”和“无组织的”两大类。后来第一代电子管计算机终于于1950年问世,其时他已经离所进入曼彻斯特大学,与计算机科学界的先行者合作共事。

1950年他发表了著名论文《计算机能思考吗?》,成为这门年轻的学术领域中权威人士。并提出了至今仍为人们经常引用的“图灵试验”。试验内容是:一个人不能接触其对手,但是可以同对手进行一系列的问答和操作,如果这个人无法判断他的对手到底是人还是计算机,那就可以认为这台计算机已经具有同人类相当的智力。如今,人工智能的研究正在突飞猛进,情况正向图灵预料的方向迅速发展,前景极为乐观。

1954年,正是图灵一生事业处于顶峰的时候,42岁的他突然去世。他的生命尽管短暂,但他的成就称得上是20世纪的一位杰出的数学家。为了纪念他,美国计算机协会设立了计算机科学最高的荣誉奖——图灵奖,以表彰在计算机科学方面做出卓越贡献的学者。

王元

王元(1930--)著名数学家,华罗庚数学奖得主。他是中国科学院数学研究所的研究员。曾任研究室主任、所长、所学术委员会主任、中国数学会理事长。1980年当选为中国科学院院士(当时称学部委员)。解析数论是他的主要研究领域。

王元教授1930年4月30日生于浙江兰溪,1952年毕业于浙江大学。大学毕业后,分配到中科院数学所师从华罗庚先生。从此,他与华先生结下了不解之缘,风风雨雨30多年,他自己也成长为一代著名数学家。五十年代至六十年代初,他首先将解析数论中的筛法用于哥德巴赫猜想的研究,并证明了命题3+4,1957年又证明了2+3。王元证明的2+3表示的是:每个充分大的偶数都可以表示成至多两个质数的乘积再加上至多3个质数的乘积。其缺点在于两个相加的数中,还没有一个肯定为质数的。这是中国学者首次在这一研究领域跃居世界领先

20

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典综合文库著名数学家简介(4)在线全文阅读。

著名数学家简介(4).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/wenku/642592.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219