(完整word版)圆锥曲线综合训练题(分专题,含答案),推荐文档(2)

来源:网络收集 时间:2025-04-29 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

)()()(||22

222

2

2

2

1x a

c

a x

a b b c x y c x F +=-++=++=

由0,>+-≥+

≥a c x a c a a x 知,所以 .||1x a

c

a F +=………………………3分 证法二:设点P 的坐标为).,(y x 记,||,||2211r F r F ==

则.)(,)(222221y c x r y c x r ++=++=

由.||,4,211222121x a c

a r F cx r r a r r +

===-=+得 证法三:设点P 的坐标为).,(y x 椭圆的左准线方程为.0=+

x a

c

a 由椭圆第二定义得a c c

a x F =+|

|||2

1,即.||||||2

1x a c a c a x a c P F +=+=

由0,>+-≥+

-≥a c x a c a a x 知,所以.||1x a

c

a F +=…………………………3分 (Ⅱ)解法一:设点T 的坐标为).,(y x

当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.

当|0||0|2≠≠TF PT 且时,由0||||2=?TF PT ,得2TF PT ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点. 在△QF 1F 2中,a F ==

||2

1

||1,所以有.222a y x =+ 综上所述,点T 的轨迹C 的方程是.2

2

2

a y x =+…………………………7分 解法二:设点T 的坐标为).,(y x 当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上. 当|0||0|2≠≠TF PT 且时,由02=?TF PT ,得2TF PT ⊥.

又||||2PF =,所以T 为线段F 2Q 的中点.

设点Q 的坐标为(y x '',),则???

?

???'=+'=

.2

,2y y c

x x 因此?

?

?='-='.2,

2y y c x x ①

由a Q F 2||1=得.4)(2

2

2

a y c x ='++' ② 将①代入②,可得.2

2

2

a y x =+

综上所述,点T 的轨迹C 的方程是.2

2

2

a y x =+……………………7分

(Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是

?????=?=+.||22

1,

2

02

20

20b y c a y x 由③得a y ≤||0,由④得.||20c b y ≤

所以,当c

b a 2≥时,存在点M ,使S=2b ; 当c

b a 2

<时,不存在满足条件的点M.………………………11分

当c

b a 2

≥时,),(),,(002001y x c MF y x c MF --=---=,

由2

2220

22021b c a y c x MF MF =-=+-=?, 212121cos ||||MF F MF MF MF ∠?=?,

22121sin ||||2

1

b MF F MF MF S =∠?=

,得.2tan 21=∠MF F 解法二:C 上存在点M (00,y x )使S=2b 的充要条件是

?????=?=+.||22

1,

2

022020b y c a y x 由④得.||20c b y ≤ 上式代入③得.0))((22242

20≥+-=-=c b a c b a c

b a x 于是,当c

b a 2≥时,存在点M ,使S=2b ; 当c

b a 2

<时,不存在满足条件的点M.………………………11分

当c

b a 2

≥时,记c x y k k c x y k k M F M F -==+==00200121,,

由,2||21a F F <知?<∠9021MF F ,所以.2|1|tan 2

12121=+-=∠k k k k MF F …………14分

11、设抛物线2

:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的

两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.(1)求△APB 的重心G 的轨迹方程;(2)证明∠PFA=∠PFB.

解:(1)设切点A 、B 坐标分别为))((,(),(012

1120x x x x x x ≠和,

∴切线AP 的方程为:;022

00=--x y x x

切线BP 的方程为:;022

11=--x y x x 解得P 点的坐标为:101

0,2

x x y x x x P P =+=

所以△APB 的重心G 的坐标为 P P

G x x x x x =++=

3

10,

,3

43)(332

1021010212

010p

P P G y x x x x x x x x x y y y y -=-+=++=++=

所以2

43G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:

).24(3

1

,02)43(22+-==-+--x x y x y x 即

③ ④

③ ④

(2)方法1:因为).4

1,(),41,2(

),41,(2

1110102

00-=-+=-=x x x x x x x x 由于P 点在抛物线外,则.0||≠

∴||41)1)(1(||||cos 102

010010FP x x x x x x x x FA FP AFP +

=--+?+==∠

同理有||41)1)(1(||||cos 102

110110FP x x x x x x x x FB FP BFP +

=--+?+==

∠ ∴∠AFP=∠PFB.

方法2:①当,0,0,,0000101==≠=y x x x x x 则不妨设由于时所以P 点坐标为)0,2

(

1

x ,则P 点到直线AF 的距离为:,4141

:;2||1

2111x x x y BF x d -=

-=的方程而直线

即.04

1

)41(1121

=+--x y x x x

所以P 点到直线BF 的距离为:2||412|

|)41()()4

1(|42)41(|1211

212

1221112

1

2x x x x x x x x x d =++=+-+-=

所以d 1=d 2,即得∠AFP=∠PFB.

②当001≠x x 时,直线AF 的方程:,04

1)41(),0(041

41002002

0=+-----

=-x y x x x x x x y 即 直线BF 的方程:,04

1)41(),0(041

411121121=+-----

=-x y x x x x x x y 即 所以P 点到直线AF 的距离为:

2||41)

41)(2|)4

1(|41)2)(41(|1020201020

2200120102

01x x x x x x x x x x x x x x d -=++-=+-+-+-=,同理可得到P

点到直线BF 的距离2

|

|012x x d -=,因此由d 1=d 2,可得到∠AFP=∠PFB. 二、中点弦问题:

12、已知椭圆1222=+y x ,(1)求过点??

? ??2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;(4)

椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足2

1

-=?OQ OP k k ,求线段PQ 中

点M 的轨迹方程.

分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.

解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则

??????

?=+=+=+=+④

,③

,②

,①,y y y x x x y x y x 2222222

1212

22

22121 ①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有

()()022*******=-+++x x y y y y x x ,

将③④代入得022

12

1=--+x x y y y

x .⑤

(1)将21=

x ,2

1

=y 代入⑤,得212121

-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662

=--y y ,04

16436>??-=?符合题意,

0342=-+y x 为所求.

(2)将22

12

1=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)

(3)将2

12121--=--x y x x y y 代入⑤得所求轨迹方程为: 02222

2=--+y x y x .(椭圆内部分)

(4)由①+②得 :

()

22

2

2212

221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 2122

22124y y y y y -=+, ⑨

将⑧⑨代入⑦得:

()

2244

242122

12=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212

212=??

? ??--+-x x y x x x , 即

12

122

=+y x .

此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决. 13、椭圆C:

22

22

1(0)x y a b a b +=>>的两个焦点为F 1,F 2,点P 在椭圆C 上,且11212414

,||,||.

33

PF F F PF PF ⊥==(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线l 过圆x 2+y 2+4x-2y=0的圆心M ,交椭圆C 于,A B 两点,且A 、B 关于点M 对称,求直线l 的方程.

解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,522

1

2221=-=

PF PF F F 故椭圆的半焦距c =5,

从而b 2=a 2-c 2=4,所以椭圆C 的方程为4

92

2y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.

因为A ,B 关于点M 对称.所以.29491822

221-=++-=+k k k x x 解得9

8

=k ,所以直线l 的方程为,1)2(9

8

++=

x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.

(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且

,14

92

121=+y

x

,14

92

222=+y

x

①-②得

.04

)

)((9))((21212121=+-++-y y y y x x x x ③

因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2, 代入③得

2121x x y y --=98,即直线l 的斜率为9

8,

所以直线l 的方程为y -1=

9

8

(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意. 14、已知椭圆22

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典知识文库(完整word版)圆锥曲线综合训练题(分专题,含答案),推荐文档(2)在线全文阅读。

(完整word版)圆锥曲线综合训练题(分专题,含答案),推荐文档(2).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/fanwen/1369293.html(转载请注明文章来源)
Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219