2024届步步高大一轮复习讲义3.4(7)

来源:网络收集 时间:2025-08-29 下载这篇文档 手机版
说明:文章内容仅供预览,部分内容可能不全,需要完整文档或者需要复制内容,请下载word后使用。下载word有问题请添加微信号:xuecool-com或QQ:370150219 处理(尽可能给您提供完整文档),感谢您的支持与谅解。点击这里给我发消息

所以阴影部分的面积

41

S=S1+S2=t3-t2≤t≤1).[6分]

33

11

t- =0,得t=0或t[8分] 令S′(t)=4t2-2t=4t 2 21112

t=0时,S=;t=S=t=1时,S=[10分]

324311

所以当t=时,S最小,且最小值为[12分]

24

温馨提醒 (1)本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查知识的迁移能力和导数的应用意识.

(2)本题易错点:一是缺乏函数的意识;二是不能正确选择被积区间.

方法与技巧 1. 求定积分的方法

(1)利用定义求定积分(定义法),可操作性不强.

(2)利用微积分基本定理求定积分步骤如下:①求被积函数f(x)的一个原函数F(x);②计算F(b)-F(a).

(3)利用定积分的几何意义求定积分

当曲边梯形面积易求时,可通过求曲边梯形的面积求定积分.

1π如:定积分 101-xdx的几何意义是求单位圆面积的 1-xdx=442. 求曲边多边形面积的步骤:

(1)画出草图,在直角坐标系中画出曲线或直线的大致图形. (2)借助图形确定被积函数,求出交点坐标,确定积分的上限、下限. (3)将曲边梯形的面积表示为若干个定积分之和. (4)计算定积分. 失误与防范

1.被积函数若含有绝对值号,应先去绝对值号,再分段积分. 2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量. 3.定积分式子中隐含的条件是积分上限大于积分下限.

4.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负.

百度搜索“70edu”或“70教育网”即可找到本站免费阅读全部范文。收藏本站方便下次阅读,70教育网,提供经典教育范文2024届步步高大一轮复习讲义3.4(7)在线全文阅读。

2024届步步高大一轮复习讲义3.4(7).doc 将本文的Word文档下载到电脑,方便复制、编辑、收藏和打印 下载失败或者文档不完整,请联系客服人员解决!
本文链接:https://www.70edu.com/fanwen/1188951.html(转载请注明文章来源)

相关推荐:

Copyright © 2020-2025 70教育网 版权所有
声明 :本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
客服QQ:370150219 邮箱:370150219@qq.com
苏ICP备16052595号-17
Top
× 游客快捷下载通道(下载后可以自由复制和排版)
单篇付费下载
限时特价:7 元/份 原价:20元
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
VIP包月下载
特价:29 元/月 原价:99元
低至 0.3 元/份 每月下载150
全站内容免费自由复制
注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219